求曲线y=cosx与直线y=2,x=π 2及y轴围成的平面图形面积.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:52:01
由于y=sinx,y=cosx的交点是(π4,22),因此所围成的面积为A=∫π20|sinx−cosx|dx=∫π40(cosx−sinx)dx+∫π2π4(sinx−cosx)dx=[sinx+c
y=sinx,y=cosx交点是(π/4,√2/2)得到S=∫(cosx-sinx)dx(0到π/4)+∫(sinx-cosx)dx(π/4到π/2)=√2-1+√2-1=2√2-2再问:再问:第10
y=x^2y'=2x设切点为(a,a^2),则切线为y=2a(x-a)+a^2=2ax-a^2代入点(1,-3),-3=2a-a^2即a^2-2a-3=0(a-3)(a+1)=0a=3,-1故直线有两
当x∈[-π/4,π/4]时,有cosx>sinx∴A=∫(cosx-sinx)dx积分限为[-π/4,π/4]=sinx+cosx=[sin(π/4)+cos(π/4)]-[sin(-π/4)+co
只有唯一解,有方程kx=x^3-3x^2+2x只有唯一解,即x(x^2-3x+2-k)=0只有唯一解,因为x=0肯定是解,所以必须x^2-3x+2-k=0无解,即△=9-4(2-k)
y=2/3π-x和y=cosx的交点为x=2/3π,y=0对2/3π-x-cosx从0到2/3π积分结果:9π^2/8+1
如图,第一个图是你要求的面积,把它可以转化成第二个图,两个面积是相同的,这样好求一点.这样,则面积是两块对称的图形,不妨算一下左边的面积,S=∫(sinx-cosx)dx (π/4≤x≤5π
如图所示:曲线y=cosx与y=sinx之间围成平面图形面积=2.835
利用定积分求解画一下图形,了解到该图形面积等于4个该曲线在[0,π/2]与x轴,y轴围成的图形的面积利用定积分有S=4∫cosxdx积分区间[0,π/2]=4sinπ/2=4再问:怎么来的4个?再答:
利用定积分:∫[0,π/2]cosxdx=∫[0,π/2]cosxdx=sinx[0,π/2]=1对∫[0,π/2]πcos^2xdx=∫[0,π/2]π/2(1+cos2x)dx=π/2(x+1/2
①求平行于直线6X+2Y+1=0并且与曲线Y=X+3X-5相切的直线方程.②求过曲线Y=cosx上点P(兀/3,1/2),且与过这点的切线的直线方程.
y=sinx,y=cosx交点是(π/4,√2/2)得到S=∫(cosx-sinx)dx(0到π/4)+∫(sinx-cosx)dx(π/4到π/2)=√2-1+√2-1=2√2-2再问:答案不对再问
再问:能简单的解释下吗?再答:曲线y=f(x),直线x=a,x=b,以及x轴围成的平面图形绕x轴旋转一周的旋转体体积公式为∫(a到b)πf^2(x)dx.y=sinx与y=cosx相交于(π/4,√2
1.在区间[0,π/2]上,函数sinx与cosx交于(π/4,根号2/2),而在[0,π/4)上cosx>sinx;在[π/4,π/2]上,sinx>cosx,所以所求面积为S=∫(0->π/2)|
当x≥0时,曲线方程为y29-x24=1,图形为双曲线在y轴的右半部分;当x<0时,曲线方程为y29+x24=1,图形为椭圆在y轴的左半部分;如图所示,由图可知,直线y=x+3与曲线y29-x•|x|
由y=2−x2y=2x+2可得,x=0y=2或x=−2y=−2∴曲线y=2-x2与直线y=2x+2围成图形的面积∫0−2[2−x2−(2x+2)]dx=∫0−2(−x2−2x)dx=(−13x3−x2
根据对称性,得:曲线y=cosx与直线x=π2、x=3π2、y=0所围成的平面区域的面积S为:曲线y=cosx与直线x=π2,x=π所围成的平面区域的面积的二倍,∴S=-2∫ππ2cosxdx=-2s
y1=x^2,y1'=2x;y2=-(x-2)^2,y2'=-2(x-2)=4-2x设此直线与曲线1相切于点(m,n),与曲线2相切于点(p,q),且此直线斜率为k则有2m=k,4-2p=k,即m+p