求正交矩阵时,特征值相等,另一个基础解系是怎么算出来的

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/15 08:37:58
正规矩阵不同特征值的特征向量两两正交

对称矩阵不同特征值的特征向量一定是两两正交的,不需要加正规矩阵的条件:设对称矩阵A特征值a1对应特征向量x1,a2对应特征向量x2,我们来证明x1'x2=0考虑a1x1'x2=(a1x1)'x2=(A

实对称矩阵相同特征值的特征向量相互正交吗?

特征向量是有时正交有时不正交的.再问:那么什么情况下正交,什么情况下不正交啊,有规律吗?再答:只要是两重以上的特征值,正交和不正交的特征向量都是存在的,任何时候都可以找到正交和不正交的特征向量

求证 正交矩阵的特征值只能是1或-1

证:设A是正交矩阵,λ是A的特征值,α是A的属于λ的特征向量则A^TA=E(E单位矩阵),Aα=λα,α≠0考虑向量λα与λα的内积.一方面,(λα,λα)=λ^2(α,α).另一方面,(λα,λα)

matlab矩阵求特征值

eig(a)一句命令搞定再问:你算算呗,就是用的这个算出来好像错的。再答:错的、??你怎么知道???再问:因为特征向量都为负的,你算算看得多少再答:手算???再问:因为特征向量都为负的,你算算看得多少

线性代数,特征值正交矩阵相关.

此乃施密特正交化公式.取β2=α2+kβ1,则β1^Tβ2=β1^Tα2+kβ1^Tβ1=0,得k=-(β1^Tα2)/(β1^Tβ1)(向量转置表示)即k=-(α2,β1)/(β1,β1),(向量内

正交矩阵的特征值为——

正交阵的特征值是模为1的复数,共轭复根成对出现,仅此而已.反过来任何满足上述条件的复数都可以作为正交阵的特征值.楼上纯属忽悠,随便举个例子A=001100010再问:那么实特征值呢

正交矩阵属于不同特征值的特征向量一定正交吗

是的.正交矩阵属于不同特征值的特征向量一定正交.约定:复数λ的共轭复数记为λ′.矩阵(包括向量)A的共轭转置矩阵(向量)记为A*A是正交矩阵,A*=A^(-1),设λ1,λ2是A的两个不同特征值,则λ

特征值均为实数的正交矩阵为对称矩阵

要用到两个性质:性质1:正交阵A的特征值λ的模|λ|是等于1的.性质2:如果λ是A特征值,则λ²是A²的特征值.还要用到Jordan标准型的相关知识.就可以证明了.详细见参考资料.

A=0 -1 1 -1 0 1 1 1 0(一个三阶矩阵),求一个正交矩阵P使P^-1AP=B为对角阵.特征值为2时基础

2不是A的特征值-2是A的特征值当齐次线性方程组只有零解时一定某个地方计算有误需检查特征值,系数矩阵,初等变换的过程再问:-x-11-1-x1=-x^3+3x-2=-(x-1)^2(x+2)--!哦我

求正交矩阵 

这个麻烦请稍候...再答:解:|A-λE|=1-λ242-2-λ2421-λr1-r3-3-λ03+λ2-2-λ2421-λc3+c1-3-λ002-2-λ4425-λ=-(3+λ)[(-2-λ)(5

为什么正交矩阵一定可以特征值分解?

1."正交矩阵的特征值只能是1或者-1"这个是严重错误!随便给你个例子0100011002."是什么保证了它有足够的特征向量使得它一定可以特征值分解"本质上讲正交矩阵是正规矩阵,所有的正规矩阵都可以酉

矩阵A^2=E,且有不同的特征值,不同特征值的特征向量正交,证明A为正交阵

A的特征值只能是1或-1,注意到(A+E)(E-A)=0,线代数上应该证明此时有r(A+E)+r(A-E)=n,也就是Ax=x的解空间和Ax=-x的解空间维数之和是n.在Ax=x中取标准正交向量组q1

如何证明正交矩阵的特征值为1或-1

设λ是正交矩阵A的特征值,x是A的属于特征值λ的特征向量即有Ax=λx,且x≠0.两边取转置,得x^TA^T=λx^T所以x^TA^TAX=λ^2x^Tx因为A是正交矩阵,所以A^TA=E所以x^Tx

线性代数 求矩阵正交p

A的特征值为1,5,-1(A-E)x=0的基础解系为a1=(1,-1,0)^T(A-5E)x=0的基础解系为a2=(1,1,1)^T(A+E)x=0的基础解系为a3=(1,1,-2)^T单位化后构成正

线性代数 矩阵求特征值

|A-λE|=17-λ-2-2-214-λ-4-2-414-λr3-r217-λ-2-2-214-λ-40λ-1818-λc2+c317-λ-4-2-210-λ-40018-λr2-2r117-λ-4

设矩阵A=[422;242;224],1、求矩阵A的所有特征值与特征向量;2、求正交矩阵P,使得P-1AP为对角矩阵.

|A-λE|=(8-λ)(2-λ)^2A的特征值为2,2,8(A-2E)x=0的正交的基础解系为a1=(1,-1,0)^T,a2=(1,1,-2)^T所以属于特征值2的全部特征值为k1a1+k2a2,

正交矩阵的特征值只能是1或-1

证:设A是正交矩阵,λ是A的特征值,α是A的属于λ的特征向量则A^TA=E(E单位矩阵),Aα=λα,α≠0考虑向量λα与λα的内积.一方面,(λα,λα)=λ^2(α,α).另一方面,(λα,λα)