求球面x^2 y^2 z^2=5位于平面z=2之上的那部分面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 17:32:55
求下列第一型曲线积分 ∫L√(2y^2+z^2)ds,其中L为球面x^2+y^2+z^2=a^2与平面x=y的交线.

你的答案是正确的,书上给的答案错误.在计算∫Lds时应当用曲线的周长,所以你给出球大圆的周长是正确的.而书上说的椭圆2y^2+z^2=a^2其实是那个球大圆投影到XOY面后的椭圆,这个显然不是题中的曲

计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z)

x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²

球面x^2+y^2+z^2=50被锥面x^2+y^2=z^2所截曲线方程是什么?怎么求?

解这两个方程所组成的方程组即可.两式相减:z²=50-z²,得:z=5或-5故x²+y²=25因此曲线是两个半径为5的圆.

球面的三重积分设M由上半球面x^2+y^2+z^2=a^2与平面z=0围成,则x^2+y^2+z^2在区域M上的三重积分

∫∫∫(x^2+y^2+z^2)dxdydz=∫(0,2π)dθ∫(0,π/2)sinφdφ∫(0,a)r^4dr=(2π/5)a^5

求函数u=x+y+z在球面x^2+y^2+z^2=1上点(x0,y0,z0)处,沿球面在该点的外法线方向的方向导数

先求出球面外法线方向的方向矢量(法矢量):f'x=2x,f'y=2y,f'z=2z.得法矢量为(x0,y0,z0)单位化:1/√(x0^2+y0^2+z0^2)(x0,y0,z0)=(x0,y0,z0

大学高等数学,积分学在八分之一球面x^2+y^2+z^2=5r^2(x>=0,y>=0,z>=0)上求一点使得函数f(x

可以用球面坐标变换去做:下面过程中a=(根号5)*r设x=acosp,y=asinpcosq,z=asinpsinq,p,q的范围是[0,Pi/2]则f=a^3cosp(sinp)^4cosq(sin

高数:求这个切面方程一个面过直线(x-3)/5=(y-4)/6=(z-5)/7,且和单位球面x^2+y^2+z^2=1相

设球上得切点为(x0,y0,z0).这点处的法向量为(2x0,2y0,2z0).又因为直线的向量为(5.6.7)在这个面中还有(x0-3,y0-4,z0-5)向量所以10x0+12y0+14zo=02

∫∫∫x*e^(x^2+y^2+z^2)^2dv 体积由球面x^2+y^2+z^2=1与球面x^2+y^2+z^2=4之

区域Ω关于坐标面都对称,而被积函数中的x是奇函数所以积分值=0再问:区域Ω在第一卦象,忘了打进去了。所以答案不是零再答:再问:答案是πe(e^15-1)/16,我理解了。出错的地方在于的ψ取值范围为[

求I=∮L(y^2+z^2)dx+(z^2+x^2)dy+(x^2+y^2)dz,其中L是球面x^2+y^2+z^2=2

将L用参数表示出来.设x=a+a*costy=a*sint则可解得z=2*sqrt(a*(b-a))*cos(t/2)全部代入,转化为关于t的积分,积分限是0到2pi.剩下的计算细节就留给你自己了再问

球面x^2+y^2+z^2=9,求曲面积分∫(闭合)x^2ds

球面x^2+y^2+z^2=9∫(闭合)x^2ds=(1/3)∮3x^2ds因为积分曲面为球面,根据对称性有,∮x^2ds=∮y^2ds=∮z^2ds=(1/3)∮(x^2+y^2+z^2)ds因为是

设s为球面x^2+y^2+z^2=1,求曲面积分∫∫(x^2+y^2+z^2-2z)ds的值

不需要楼上那么麻烦啊,而且楼上也做错了首先积分曲面关于xoy面对称,对于-2z这个奇函数,积分结果为0.原式=∫∫(x^2+y^2+z^2)ds=∫∫1ds=4π1、第一类曲面积分可以用曲面方程化简被

求x+y+z=100且与球面x^2+y^2+z^2=4相切的平面方程

题目说清楚.x+y+z=100这个平面干什么用?要与它平行吗?就当作要求与平面x+y+z=100平行吧.可以设所求平面为x+y+z=n依据柯西不等式:(x^2+y^2+z^2)*(1+1+1)>=(x

求由柱面x^2+y^2=Rx和球面x^2+y^2+z^2=R^2所围成的立体的体积

由对称性,只需计算xy平面上方部分的体积然后乘以2即可.记D={(x,y):x^2+y^2

设F是球面x^2+y^2+z^2 = 1与平面x+y+z=0的交线,则∮(2x+3y^2)ds = 求具体解题步骤,快要

由积分曲线的方程可以看出表达式具有轮换对称性,因此∮xds=∮yds=∮zds,同理∮x^2ds=∮y^2ds=∮z^2ds,所以∮xds=(1/3)(∮(x+y+z)ds)=0,∮y^2ds=(1/

求通过直线2x+y=0,4x+2y+3z=6且与球面x^2+y^2+z^2=4相切的平面方程

联立2x+y=0,4x+2y+3z=6得:z=2所以:已知直线在平面z=2上而:球面x^2+y^2+z^2=4的球心在原点,半径为2所以:z=2是这个球的切面所以,所求的平面方程就是:z=2再问:这个