求由两抛物线y=与x=所围成图形的面积A.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:37:37
求由抛物线Y=X^与y=2-x^ 所围成图形的面积,并求此图形绕x轴旋转一周所成立体的体积.

图画起来有点麻烦,立体的就不画了. ,要求抛物线Y=X^与y=2-x^ 所围成图形的面积,先求一半(即右边部分的)我这积分符号打不出,用字母说明.S=X^2在[0,1]上的积分-(

求由抛物线Y=X²;与y=2-X² 所围成图形的面积,并求此图形绕x轴旋转一周所成立体的体积.

要求抛物线Y=X^与y=2-x^所围成图形的面积,先求一半(即右边部分的)我这积分符号打不出,用字母说明.S=X^2在[0,1]上的积分-(2-x^2)在[0,1]上的积分=[X^3-(2X-X^3)

求由抛物线y=x平方和直线X=Y平方 所围成的图形的面积.

面积=∫[0,1]根号x-x²dx=【2/3X的3/2次方-1/3X³】[0,1]=2/3-1/3=1/3

已知抛物线y=-x^2/a+2x(a>0),过原点的直线l平分由抛物线与x轴所围成的封闭图形的面积,求l的方程.

估计要用到定积分易知抛物线过(0,0)和(2a,0)令直线L:y=kx因x=0时y'=2,表明0再问:能画个图不看起来直观一点再答:

求由抛物线y^2=2x与直线x-y=4所围成的图形的面积

如图,阴影部分即为所求面积将函数换成以y为变量,积分比较方便y^2=2x => x=y^2/2    x-y=4 =>

求由抛物线y=x^2与直线y=4所围成的图形的面积

解题思路:利用定积分的知识求解。解题过程:见附件最终答案:略

两条抛物线Y平方=4x与X平方=4y相交所成的弦长

yy=4x,xx=4yyy-xx=4x-4y(y+x)(y-x)=4(x-y)x=y,或y+x=-4代入yy+8y+16=4y,yy+4y+16=0所以交点要求x=y,(0,0),(4,4)弦长=4√

求由两抛物线y=x^2与y=根号x所围成的图形的面积.

y=x^2与y=根号x交点为(0,0)和(1,1)s=微积分0到1根号2-x^2=2/3x^3/2-1/3x^3|0到1=1/3

求由抛物线y=x2和直线y=x所围成的图形的面积.

由于抛物线y=x2和直线y=x的交点为(0,0)和(1,1)因此,以x为积分变量,得面积A=∫10(x−x2)dx=16.

求由抛物线y=x2和直线y=x+2所围城的平面图形的面积

如图所示:所围城的平面图形的面积的近似值=4.47

求由抛物线y=(1/4)x^2与直线3x-2y=4所围成的图形的面积

直线为y=(3/2)x-2与抛物线交天点(2,1)、(4,4).所求面积=积分[2,4][(3/2)x-2-(1/4)x^2]dx=[2,4][(3/4)x^2-2x-(1/12)x^3]=[(3/4

求直线y=3x+4与抛物线y=x2的交点坐标,并求出两交点与原点所围成的三角形的面积

y=3x+4、y=x²联立得x²-3x-4=0(x-4)(x+1)=0x=4或x=-1带入函数解析式求得y=16或y=1所以两交点坐标为(4,16)(-1,1)所围成的三角形的面积

求由两条抛物线y=x2和y=1所围成的图形的面积.

由于y=x2和y=1的交点为(±1,1)∴所围成的图形的面积A=∫1−1(1−x2)dx=2∫10(1−x2)dx=43

计算二重积分:∫∫x(根号下y)dσ,其中D是由两条抛物线y=根号下x及y=x2所围成的闭区域!求过程!

{y=√x{y=x²==>交点为(0,0),(1,1)∫∫_Dx√ydσ=∫(0→1)x∫(x²→√x)√ydy=∫(0→1)x·(2/3)y^(3/2):(x²→√x)

求由两条抛物线x=e的x次方 y=1 ,y轴所围成平面图形的面积

y=e的x次方y=1,y轴是交于同一个点的,题目错

求由抛物线y=x^2 与直线y=2-x 、y=0 所围成的平面图形分别绕x 轴和y 轴旋转一周所得 体积Vx、Vy?

抛物线y=x^2,直线y=2-x,y=0所围成的平面图形的边界点分别为:(0,0),(1,1),(2,0),当绕x轴旋转时,积分区间为:[0,2],在[0,1]上被积函数为:y=x^4,在[1,2]上

已知抛物线y=-x^2/a+2x,过原点的直线l平分由抛物线与x轴所围成的 面积求l的方程

因为过原点,设直线方程方程为y=kx由y=-x²/a+2x=-(1/a)x(x-2a)=-(1/a)(x-a)²+a可知:抛物线与x轴交于(0,0)、(2a,0)两点,极值为a,关