求过曲线y=x³上点(1,1)的切线的直线方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:01:57
手机没法输入公式,方法如下.对斜率求x的不定积分,代入(1,1)求得待定常数.得解再问:对斜率怎么求不定积分呢再答:斜率的表达式y=f(x)即y'=4x^2-y'/x',得y‘=4x^2/(1+1/x
设曲线方程为y=a+kx,其中k是斜率把点(0,1)带入得1=a再把斜率2xy和a=1同时带入方程y=a+kx得y=1+2xy*x整理得:y=1/1-2x^2
y‘=x+yy’-y=x是线性非齐次方程.P(x)=-1,Q(x)=x-∫P(x)dx=x∫Q(x)e^[∫P(x)dx]dx=∫xe^(-x)dx=-xe^(-x)-e^(-x)∴原方程通解为y=e
这个问题简单哦y'=3x^2+2当x=0时.得K=2又过(0,1)得切线方程y=2x+1完毕给分
y=xy=-1再问:过程过程→_→再答:把内点1,1带入求得切线再答:法线定义忘了,再答:可能不太对再问:得得得我这个学渣也看不懂再答:😊😊😊
y=x^3-2xy'=3x²-2当x=1时,y'=1即斜率为1∴切线:y=x-1-1=x-2再问:是“过点”不是“在点”,要是“在点”就好求了,可老师说这两种情况不一样。再答:设切点为(a,
y'=-sinx,y'(π/3)=-sinπ/3=-√3/2.所以,所求切线方程为y-1/2=(-√3/2)(x-π/3),即√3x+2y-√3π/3-1=0.
设切线斜率为k,P(x,x^3+x-1)由已知,k=4又因为k=y‘=(x^3+x-1)'=3x^2+1解得:x=±1所以P(1,1)或P(-1,-3)
过(1,-1)点的切线方程,该点不是切点,因为不在原函数曲线上,所以设切点(m,n),其中n=m^3-2my'=3x^2-2切线斜率k=3m^2-2从而切线方程:y-n=(3m^2-2)(x-m)①∵
y=x^2y'=2x设切点为(a,a^2),则切线为y=2a(x-a)+a^2=2ax-a^2代入点(1,-3),-3=2a-a^2即a^2-2a-3=0(a-3)(a+1)=0a=3,-1故直线有两
y=x+(1/x)=x+x^(-1)y′=1-(1/x^2)当x=1时,y′=1-(1/1^2)=0则,在点(1,2)处切线的斜率为0当x=1时,y=2利用直线点斜式方程,写出切线方程得:y-2=0(
y=√x求导:斜率k=y'=1/(2*√x)因此切线方程l:y-y0=1/(2*√x0)*(x-x0)整理一下,得到:y=(x-x0)/(2*√x0)+√x0将(-1,0)代入上式:0=(-1-x0)
由于斜率为dy/dx=-y/(x+y)所以dx/dy=-(x+y)/y=-1-x/y推出dx/dy+x/y=-1.用一阶微分线性方程公式得出x=-y/2+c/y,讲(1,2)代入,得出C=4,最后化简
①求平行于直线6X+2Y+1=0并且与曲线Y=X+3X-5相切的直线方程.②求过曲线Y=cosx上点P(兀/3,1/2),且与过这点的切线的直线方程.
答:点(-1,0),y=x^2+x+1,该点不在曲线上设切点为(a,a^2+a+1)在曲线上y对x求导得:y'(x)=2x+1切线斜率k=y'(a)=2a+1所以:k=2a+1=(a^2+a+1-0)
如果你没有学导数:设所求直线为y=a(x+1),曲线y=根号x单调递增,其切线必然与该曲线只有切点这一个交点.也就是说联立两方程只有唯一解,联立得到(ax)^2+(2a^2-1)x+a^2=0,该方程
储备知识:1)曲线y=x^n对其求导(即求其微分)y’=n•x^(n-1)若有点Q(a,a^n)把x=a代入y’=n•x^(n-1)得到y’=n•a^(n-1)即为
f(x)的导数也就是斜率已知,那么f(x)=(1/3)x^3-x^2+c,又因为过点(0,1)则f(x)=(1/3)x^3-x^2+1
y=5√xf'(x)=5/(2√x)平行时,f"(x)=2x=25/16f(x)=25/4切线为y-25/4=2(x-25/16)设切点(t,f(t))切线为y-5√t=5/(2√t)(x-t)代入(
y'=3x^2-2 y'(1)=3-2=1因此由点斜式得切线方程为y=1*(x-1)-1=x-22.y'=2xy'(1)=2因此在点(1,1)的切