f(x)=sin(2wx π 3)怎么化简
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:05:40
f(x)=sinwxcosPai/3+coswxsinPai/3-coswxcosPai/6+sinwxsinPai/6+coswx=sinwx+coswx=根号2sin(wx+Pai/4)T=2Pa
f(x)=(1-cos2wx)/2+√3/2*sin2x=(√3/2)sin2wx-1/2*cos2wx+1/2=√[(√3/2)^2+(1/2)^2]*sin(2wx-z)+1/2其中tanz=(1
(1)sin(wx+π/6)=sinwxcosπ/6+coswxsinπ/6sin(wx-π/6)=sinwxcosπ/6-coswxsinπ/6f(x)=sin(wx+π/6)+sin(wx-π/6
cos(π/2-wx)=sin(wx)所以f(x)=sin^2wx+根号3coswxsin(wx)所以=二分之(根号三加二)乘sin^2wx因为相邻两条对称轴之间的距离为π\2所以w=1)求W的值及f
(1)f(x)=sin²ωx+2√3sin(ωx+π/4)cos(ωx-π/4)-cos²ωx-√3=2√3·√2/2(sinωx+cosωx)·√2/2(sinωx+cosωx)
把三角函数分解,利用公式sin(x+y)=sinxcosy+cosxsiny,然后把2sin[wx-(π/6)]sin[wx+(π/3)分解开乘起来,与sin[2wx-(π/3)]相等,求解
(1)f(x)=2sin(wx-π/6)•sin(wx+π/2-π/6)=2sin[π/2+(wx-π/6)]•sin(wx-π/6)=2cos(wx-π/6)•s
f(x)=sinwxcospi/6+coswxsinpi/6+sinwxcospi/6-coswxsinpi/6-coswx-1=根3sinwx-coswx-1=2sin(wx-pi/6)-1所以值域
f(x)=√3sin²(wx/2)+sin(wx/2)cos(wx/2)=-(√3/2)*[1-2sin²(wx/2)-1]+(1/2)*2sin(wx/2)cos(wx/2)=-
①f(x)=sin^2wx+√3sinwxsin(wx+π/2)=1/2(1-cos2wx)+√3sinwxcoswx=1/2(1-cos2wx)+√3/2sin2wx=√3/2sin2wx-1/2c
已知函数f(X)=sin^2wx+根号3sinwx*sin(wx+π/2)+2cos^2wx,x属于R,在y轴右侧的第一个最高点的横坐标为π/6,求w;若将函数f(x)的图像向右平移π/6个单位后,再
f(x)=√3sin(wx+φ/2)*cos(wx+φ/2)+sin^2(wx+φ/2)=(√3/2)sin(2wx+φ)+(1/2)[1-cos(2wx+φ)]=sin(2wx+φ-π/6)+1/2
已知函数f(x)=根号3sin(wx+φ)++(w>0,-π/2x=(π-2φ)/4=π/3==>φ=-π/6∴f(x)=√3sin(2x-π/6)(2)解析:设f(a/2)=√3/4,(π/6<a<
1:(sinwx)^2+√3sinwxsin(wx+π\2)=(sinwx)^2+√3sinwxcoswx=2[(sinwx)^2+(√3\2)sin2wx]\2=[2(sinwx)^2+√3sin2
f(x)=sin^2wx+√3sinwxsin(wx+π/2)=sin^2wx+√3sinwxcoswx=1/2(1-cos2wx)+√3/2sin2wx=√3/2sin2wx-1/2cos2wx+1
直线x=π/3,x=π/2都是函数f(x)=sin(wx+φ)(w>0,-π
由1,3作为条件,可以得到2,由2,3作为条件,可以得到1,由1,3得到2,证明:由3可知w=2或-2,设定w=2时,由1可以得到2*π/12+t=kπ/2,k为不等于0的整数.得到t=kπ/2-π/
①f(x)=sin^2wx+√3sinwxsin(wx+π/2)=1/2(1-cos2wx)+√3sinwxcoswx=1/2(1-cos2wx)+√3/2sin2wx=√3/2sin2wx-1/2c
sin(wx+π/2)=sinwxcosπ/2+coswxsinπ/2=coswxf(x)=sin^2wx+根号3sinwxsin(wx+π/2)=sin²wx+√3sinwxcoswx=(