fln2 0根号e^x-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 20:51:46
1、原式=∫e^xdx/[(e^x)^2+1]=∫d(e^x)/[1+(e^x)^2]=arctan(e^x)+C.2、设x=sect,dx=sect*tantdt,tant=√(x^2-1),1/x
令根号下1+e^x=t则有1+e^x=t^2dx=[2t/(t^2-1)]dt原式=2∫t^2/(t^2-1)dt=2∫1+1/(t^2-1)dt=2t+ln|(t-1)/(t+1)|+c再问:1/(
令√(1+e^x)=m则x=ln(m^2-1)上式=∫dln(m^2-1)/m=∫2/(m^2-1)dm=ln|(m-1)/(m+1)|+C=ln|(√(1+e^x)-1)/(√(1+e^x)+1)|
t=(e^x+1)^0.5dx=2t/(t^2-1)∫(e^x+1)^0.5dx=∫2t^2/(t^2-1)dt=∫2+2/(t^2-1)dt=2t+ln[(t-1)/(t+1)]+c
/>设根号(e^x-1)=tt^2+1=e^xx=ln(t^2+1)代入得∫tdln(t^2+1)=∫2t^2/(t^2+1)dt=2*∫t^2/(t^2+1)dt=2*∫(t^2+1-1)/(t^2
lim∞>ln(1+e^x)/根号(1+x^2)罗比达法则lim∞>ln(1+e^x)/根号(1+x^2)=lim∞>[e^x/(1+e^x)])/[x/√(1+x^2)]=lim∞>[√(1+x^2
你可以把根号下(e^x-1)/(e^x+1)等于t试试,我没细做,但应该可行
设t=e^根号(x+1)则x=(lnt)^2-1dx=(2lntdt)/t∫(e^根号(x+1))dx=∫t*(2lntdt)/t=∫2lntdt=2∫lntdt=2tlnt-t+C=2e^根号(x+
1+e^x=t^2x=ln(t²-1)dx/dt=2t/(t^2-1)
∵不定积分∫√(1-e^(-2x))dx=∫√(1-e^(-2x))dx=∫√(e^(2x)-1)/e^xdx=ln(e^x+√(e^(2x)-1))-√(e^(2x)-1)/e^x+C,(其中:C是
令t=√(1-e^(-2x)),t^2=(1-e^(-2x)),e^(2x)=1/(1-t^2)2e^(2x)dx=2tdt/(1-t^2)^2,dx=[tdt/(1-t^2)^2]/e^(2x)=t
∫(x*e^x)/√(e^x+1)dxLetψ=√(e^x+1)=>x=ln(ψ²-1)=>dx=2ψ/(ψ²-1)dψ=∫[ln(ψ²-1)*(ψ²-1)/ψ
令u=√(x+1),x=u²-1,dx=2udu∫e^[2√(x+1)]dx=2∫ue^(2u)du,之后分部积分法=2∫ud(1/2*e^(2u))=∫ud(e^(2u))=ue^(2u)
分母应该是√(1-e^2x)吧令e^x=t,x=lnt,dx=1/tdt∫e^x/√(1-e^2x)dx=∫t/√(1-t²)•1/tdt=∫1/√(1-t²)dt=a
再问:可以细致的告诉我x是怎么化出来的吗?
1.令t=(1+e^x)^1/2x=㏑(t^2-1).dx=2t/(t^2-1)dt.∫dx/(1+e^x)^1/2=∫[2/(t^2-1)]dt=∫[(1+t+1-t)/(t^2-1)]dt=ln|
答:∫(1/√x)e^(√x)dx=2∫(1/2√x)*e^(√x)dx=2∫e^(√x)d(√x)=2e^(√x)+C
∫(1/根号x*e^3根号x)dx=2∫e^(3√x)d√x=2/3e^(3√x)+C