fx=3sin^2x 2√3sinxcosx 5cos^2x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 22:44:03
fx=-√3cos2x-sin2x=-2sin(2x+π/3)所以最小正周期为πf'x=-4cos(2x+π/3),f'x>0时递增x在(π/12,π/3)上递增f'x=0,x=π/12.极小值f(π
f(x)=√3sin²x+sinxcosx=√3[(1-cos2x)/2]+1/2sin2x=1/2sin2x-√3/2cos2x+√3/2=sin(2x-π/3)+√3/2∵x∈[π/2,
(1)f(x)=2sin(2x+π/3)+2由2x+π/3=kπ+π/2,k∈Z得2x=kπ+π/6,k∈Z对称轴方程为x=kπ/2+π/12,k∈Z(2)g(x)=f(x)+m=2sin(2x+π/
sin(a-B)cosa-1/2[sin(2a+B)-sinB]=sin(a-B)cosa-1/2[2cos(a+b)sina]=sin(a-b)cosa-cos(a+b)sina=sinacosbc
f(x)=sin²x+√3sinxcosx+2cos²x,=√3sinxcosx+cos²x+1=√3/2sin2x+1/2(1+cos2x)+1=√3/2sin2x+1
发现你对三角函数公式之间的转化用的不是很熟啊,要努力!不过题目输入的不错,能不能告诉我是在哪里面输入的?我看你的办公软件用的挺好,将2sin^2(π/4+x)化简为1+sin2x,再与后面一项合并化简
1、最小正周期T=2π/2=π;最大值=2×1+2=4;2、单调递增式时-π/2+2kπ≤2x+π/3≤π/2+2kπ(k∈Z)-5π/6+2kπ≤2x≤π/6+2kπ(k∈Z)-5π/12+kπ≤x
1.T=πfx=2cosxsin(x+π/3)-√3sin^2x+sinxcosx=cosxsinx+√3cos^2x-√3sin^2x+sinxcosx=2sinxcosx+√3cos2x=sin2
向量m=(2sinx/4,2sin^2x/4-1),n=(cosx/4,-√3)f(x)=mn=2sin(x/4)cos(x/4)-√3[2sin^2(x/4)-1]=sin(x/2)+√3cos(x
再问:第5步为什么要提出一个√3/3,sin前面的1/2去哪了?再答:1/2哪去了?哪也没去啊?只是换了一种存在的方式而已:[(√3)/3]×[(√3)/2]=1/2
答:f(x)=2sin(x-π/3)cosx+sinxcosx+√3(sinx)^2=sin(x-π/3+x)+sin(x-π/3-x)+sinxcosx+(√3/2)(1-cos2x)=sin(2x
f(x)=cos(2x-π/3)+2sin(x-π/4)sin(x+π/4)=cos(2x-π/3)+2sin(x-π/4)cos[π/2-(x+π/4)]=cos(2x-π/3)+2sin(x-π/
f(x)=(√3/2)sin2x-(1/2)[(cosx)^2-(sinx)^2]-1=(√3/2)sin2x-(1/2)cos2x-1=sin(2x-π/6)-1f(x)的最大值是0,最小值是-2,
x^2-4x-2=0两根性质,tanα+tanβ=4,tanαtanβ=-2,所以sinαcosβ+cosαsinβ=4cosαcosβ,sinαsinβ=-2cosαcosβ,sin(α+β)=4c
f(x)=cos(2x-π/3)+2sin(x-π/4)sin(x+π/4)=(1/2)cos2x+(√3/2)sin2x+(cos(π/2)-cos2x)=-(1/2)cos2x+(√3/2)sin
T=2π/2=π[-1,1]最大值为1,最小值为-1
(1)化简可得f(x)=(sin(x/2))^2+((√3)/2)sinx-0.5f'(x)=sin(x/2)cos(x/2)+((√3)/2)cosx=sinx+√3cosx=0√3cosx=-si
解答;f(x)=sin(2x+3分之π)∴sin(2x+π/3)=-3/5∵x∈(0,π/2)∴2x+π/3∈(π/3,4π/3)∵sin(2x+π/3)
解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数
f(x)=√3sin2x-2sin²x=√3sin2x-(1-cos2x)=2sin(2x+π/6)-1∴当sin(2x+π/6)=1时f(x)max=2*1-1=1