fx在(0,1)连续,在(0,1)可导,f(0)=积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:41:16
题1,已知fx是定义在R上的奇函数,且当x大于0时,fx=x^2+x+1,求fx解析式

1.f(-x)=-f(x)=-x^2-x-1,x>0,令k=-x,f(k)=-k^2+k-1,k0;f(x)=0,x=0;f(x)=-x^2+x-1,x

已知函数fx=1/x²+1.判断函数fx在区间(0+∞)上的单调性并证明.求fx在区间[1,

解判断函数fx在区间(0+∞)上单调递减设x1,x2属于(0,正无穷大)且x1<x2则f(x1)-f(x2)=1/(x1^2+1)-1/(x2^2+1)=(x2^2-x1^2)/(x1^2+1)(x2

设fx在x=0处连续,且limf(x)/x存在,证明f(x)在x=0处可导

因为limf(x)/x存在,且x=0处连续,所以f(0)=0,所以limf(x)/x=lim[f(x)-f(0)]/x-0=f'(0),所以f(x)在x=0处可导

已知函数fx=1-3/x-a.1)若fx为奇函数,求a的值; 2)试判断fx在(-无穷大,0)上

你还是把题照个图片吧,函数看不清再问:再答:你是几年级的学过高数没?再问:还没呐。才高一再答:噢,那我就用这个方法再答:再答:记得好评哦再问:Thanks~

高数一道证明题 设函数fx在0,1上连续,在0,1内可导,且3乘上积分号2/3到1 fxdx

等式左边,积分中值定理:3*f(ξ)*(1-2/3)=f(ξ)=f(0)(0

已知函数fx=x-1/2ax^2-ln(1+x) . 求 1,fx的单调区间 2,若fx在[0,

解析如下:f′(x)=x(1-a-ax)x+1,x∈(-1,+∞).依题意,令f'(2)=0,解得a=13.经检验,a=13时,符合题意.…(4分)①当a=0时,f′(x)=xx+1.故f(x)的单调

已知定义在R上的奇函数fx,当x>0时,fx=x²+lxl-1,那么x<0时,fx=

当x≥0时,f(x)=x^2+2x,此函数单增又函数是奇函数因此xaa^2-5a+4>0(a-4)(a-1)>0a>4或a

关于函数连续证明fx在〔0,2]连续且f(2)=f(0),证明存在x2-x1=1使得f(x1)=f(x2).

由于所给出的区间左边是开的,所以补充定义f(0)=limf(x)使其在闭区间[0,2]连续构造函数g(x)=f(x+1)-f(x)g(0)=f(1)-f(0),g(1)=f(2)-f(1)g(0)+g

已知函数fx对任意x,y∈R,总有fx+fy=fx+y,且当x>0时,fx<0,f(-1)=2 求证:fx在R上是减函数

令x=y=02f(0)=f(0)f(0)=0令y=-xf(x)+f(-x)=f(0)=0f(x)=-f(-x)是奇函数设x2>x1,则x2-x1>0f(x2-x1)

函数fx具有一阶连续导数,证明Fx=(1+|sinx|)f(x)在x=0处可导的充要条件是f(0)=0.

充分性.若f(0)=0,则F'(0)=lim(h->0)[(1+|sinh|)f(h)]/h=lim(h->0)f(h)/h=f'(0)即充分性成立.必要性.若F'(0)存在,有F'(0)=lim(h

为何函数fx在闭区间上连续,就一定在该区间上一致连续

前一句已经说在此区间连续,就一定连续啊再问:那在开区间上连续有为何不一定一致连续再答:只在一个区间内连续,不一定在定义域内连续啊再答:如f(x)=tanX再答:在负二分之派到正二分之派上为连续再答:但

设fx在R上是奇函数,当x大于0时,fx=-x(1+x),求当x小于0时,求fx表达式

设x0则f(-x)=x(1-x),又函数为奇函数所以f(-x)=x(1-x)=-f(x)故f(x)=-x(1-x)

已知fx是定义在R上的奇函数,且当x大于0时,fx=x^2+x-1,那么x小于0时fx=

1.f(-x)=-f(x)=-x^2-x-1,x>0,令k=-x,f(k)=-k^2+k-1,k0;f(x)=0,x=0;f(x)=-x^2+x-1,x

fx在R上是偶函数,x小于等于0时,fx=1-x/1+x 1.求f(x)2.解方程fx=0

设x>0,则-x<0所以f(-x)=(1+x)/(1-x)(x>0)因为f(x)是偶函数,所以f(-x)=f(x)(x>0)所以f(x)=f(-x)=(1+x)/(1-x)(x>0)所以f(x)=(1

证明:有f(x+y)=fx+fy且fx在0处连续,则函数fx在R上连续,且fx=ax,其中a=f(1)

亲,百度一下柯西函数方程吧.过程过于复杂的

已知函数fx=1+1/x 【1】用定义证明fx在0正无穷上为减函数【2】判断函数fx的奇偶性

【1】f(x)=1+1/x,令X2>X1>0f(x2)-f(x1)=1/X2-1/X1=(X1-X2)/X1X2<0,∴f(x)在(0,+∞)为减函数.【2】f(-x)=1-1/x既

Fx在(0,2a)在连续 F0=F2a,证明在(0,a)上至少存在一点B使是FB=F(B+a)

构造函数g(x)=f(x+a)-f(x),且在区间[0,a]上是连续的.因为:g(0)=f(a)-f(0)g(a)=f(2a)-f(a),由f(2a)=f(0)可知g(0)乘g(a)=

1.证明函数f在点(0,0)可微分; 2.说明fx的偏导数与fy的偏导数在点(0,0)不连续; 求

再答:下面证明偏导数不连续再答:再答:原问题得证