f具有二阶连续可偏导,则二阶混合偏导数有什么性质

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 19:27:49
设f(x)具有二阶连续导数,求∫xf''(x)dx

∫xf''(x)dx=∫xdf'(x)=xf'(x)-∫f'(x)dx=xf'(x)-∫df'(x)=xf'(x)-f(x)+C

设f(x)在[0,1]上具有二阶连续导数,且|f''(x)|

f(0)=f(x)+f'(x)(0-x)+0.5f''(a)(0-x)^2f(1)=f(x)+f'(x)(1-x)+0.5f''(b)(1-x)^2两式相减,移项,取绝对值得|f'(x)|=|f(1)

f(x)在(a,b)上具有二阶连续导数又 f'(a)=f'(b)=0 证明:存在u属于(a,b) f(u)

应该是f''(u)吧在x=a,x=b处分别泰勒展开得f(x)=f(a)+f'(a)(x-a)+f''(Φ1)(x-a)^2/2!f(x)=f(b)+f'(b)(x-b)+f''(Φ2)(x-b)^2/

设f(x)在(-1,1)内具有二阶连续导数,且f''(x)不等于0,证明:

1)证存在:因为f''(x)不等于0所以f'(x)在定义域内单调且原函数f(x)在定义域内连续可导令x属于(0,1),则在0的区间(0,x)内必有一点ζ,满足f'(ζ)=[f(x)-f(0)]/(x-

f(x)具有二阶连续导数,f(0)=0,证明g(x)在负无穷到正无穷的导函数连续

当x不等于零时g(x)=f(x)/x,显然f(x)具有二阶连续导数,1/x也是可导的,故g′(x)=[xf′(x)-f(x)]/x^2,当x不等于0时,由于f(x)具有二阶连续导数,故f′(x)也是连

设函数F(X)具有二阶连续导数,且满足F(X)=[微分(上限X下限0)F(1-t)dt]+1,求F(X)

求导F'(x)=F(1-x)变换变量F'(1-x)=F(x)在对F'(x)=F(1-x)求导F''(x)=-F'(1-x)=-F(x)解得F(x)=Acosx+Bsinx∵F(0)=1,F'(1)=F

设f(x)在点a的某领域内具有二阶连续导数,求

首先要说明:不是求“在x→0时的极限值”,而是求“在h→0时的极限值”因为设f(x)在点a的某领域内具有二阶连续导数,所以:lim(h→0){[f(a+h)+f(a-h)-2f(a)]/h^2}.是(

设函数f(u,v)具有二阶连续偏导数,z=f(x,xy),则∂

∵z=f(x,xy),令u=x,v=xy∴∂z∂x=f′1+yf′2∴∂2z∂x∂y=∂∂y(f′1+yf′2)=∂f′1∂y+∂∂y(yf′2)═(∂f′1∂u∂u∂y+∂f′1∂v∂v∂y)+f′

已知f(x)具有二阶连续导数,且f(0)=1,f(2)=4,f'(2)=2 求∫xf''(2x)dx

∫(0→1)xƒ''(2x)dx=(1/2)∫(0→1)xƒ''(2x)d(2x)=(1/2)∫(0→1)xd[ƒ'(2x)]=(1/2)[xƒ'(2x)]|(

设Z=f(x+y+z,xyz),f具有二阶连续偏导数,求∂z/∂x.

f后面的1与2是下标.∂z/∂x=f1'+yzf2'

具有二阶连续偏导数,具有二阶连续导数,分别代表了什么?具有一阶连续偏导或一阶连续导数呢

首先偏导数是针对二元或二元以上的函数,导数是针对一元函数;二阶偏导数连续,就是说二阶偏导数存在,并且二阶偏导数是连续函数;二阶导数连续就是说二阶导数存在,并且这个二阶导函数是连续函数;一阶类似.希望可

设z=x^3 f(xy,y/x),其中f具有二阶连续偏导数,求az/ax.

设u=xy,v=y/x,则z=x³f(u,v),au/ax=y,av/ax=-y/x²故az/ax=3x²f(u,v)+x³f'u(u,v)(au/ax)+x&

f(x)在点x=0处具有连续的二阶导数,证明f

证明啥?啊1111111111111111再问:问题补充:证明f(x)的二阶导数有界再答:证明不了的,举个例子,x^4的2阶导数是12x^2,在0处连续,但是无界

已知z=f(e-xy,x/y)其中f具有二阶连续偏导数,求az/ax

先等会,十分钟再问:嗯嗯,谢谢再答:你确定括号里面是e-xy?再问:是e^(-xy)再答:哦再问:再答:图片发不过去再答:我告诉你怎么做吧再问:啊?QQ邮箱再问:可以吗再问:嗯嗯再问:62630868

设函数f(x)具有二阶连续导数,且f"(x)不等于0.

根据泰勒公式f(x+h)=f(x)+f'(x)h+(1/2)f''(x)h^2+o(h^2)于是:f(x)+hf'(x+θh)=f(x)+f'(x)h+(1/2)f''(x)h^2+o(h^2)θ{[

Z=f(x+y,xy)其中f具有二阶连续偏导性,求二阶偏导数?

再问:你写这些我都明白,可我不明白这个是怎么计算来的?你就帮我把这个计算过程还有方法详细列下。再答:我很好奇你居然都明白,还问这怎么回事!我真搞不懂你到底明白在哪了?我不说的很详细吗?这是复合函数求导

f(x)具有二阶连续导数,f(0)=1,f'(0)=-1,且[xy(x+y)-f(x)y]dx+[f'(x)+x^2y]

设该二元函数为g(x,y),则g'x(x,y)=xy(x+y)-f(x)y两边对x求积分g(x,y)=x³y/3+x²y²/2-y∫f(x)dxg'y(x,y)=f'(x

设u=f(x,x/y),其中f具有二阶连续偏导数,求u对x的二阶连续偏导数,

再问:请问那个f12的二阶导数是怎么来的啊再答:前面两个都来自f1'对x的偏导数再问:哦再问:再问您一下,还是这道题,先对x再对y求二阶连续偏导怎么做啊再问:u先对x再对y再答:再问:多谢再问:请问最