点p处的切线pT平分PF1F2在点p处的外角

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 22:32:22
P为直线x-y+4=0上一点,PT为圆C:(x-1)^2+(y+1)^2=2的切线,求切线PT的绝对值的最小值.

设P(x,x+4),切线|PT|=√[(x-1)^2+(x+5)^2-2]=√(2x^2+8x+24)=√[2(x+2)^2+16],x=-2时它取最小值4.

从圆C外一点P(a,b)向圆作切线PT,PT=PO(O为原点),求PT的绝对值的最小值及P点坐标

连结PC设PT=PO=m圆的方程可化为(x-2)^2+(y-3)^2=1则PC=根号(m^2+1)由OP+PC=m+根号(m^2+1)>=OC=根号13故m>=6根号13/13此时P在OC上kOC=3

导数方法求切线斜率?曲线Y=sin3x在点P(pi/3,O)处的切线斜率?

解y=sin3x求导y'=(sin3x)'=3cos3x切线的斜率k=y'(x=pi/3)=3cos(pi)=-3斜率是负3,跟答案不同.欢迎追问,望采纳.希望采纳

请问,如何证明,椭圆上任意一点P处的切线平分△PF1F2在点P处的外角?

很高兴为您解答,【学习宝典】团队为您答题.请点击下面的【选为满意回答】按钮,

椭圆性质求证明椭圆中PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的

左焦点F1在直线PT上的射影为H,延长F1H交F2P于点Q,可以证明PT垂直平分线段F1Q,从而QP=F1P、F1H=HQ,根据椭圆定义,PF1+PF2=2a,而QP+PF2=PF1+PF2=2a,即

求证:椭圆上点P处的切线PT平分△PF1F2在点P处的外角

左焦点F1在直线PT上的射影为H,延长F1H交F2P于点Q,证明PT垂直平分线段F1Q,从而QP=F1P、F1H=HQ,根据椭圆定义,PF1+PF2=2a,而QP+PF2=PF1+PF2=2a,即QF

已知曲线y=2x^2上一点P(2,8),则点P处切线的斜率为多少?点P处切线方程为多少

f(x)=2x^2f'(x)=4xk=f'(2)=8y=8x+b过(2,8),b=-8切线y=8x-8求导规则f(x)=axf'(x)=a说明系数不动f(x)=x^nf'(x)=nx^(n-1),说明

过点P(2,3)做圆C:(x-1)2+(y-1)2=1的切线,设T为切点,则切线长|PT|=(  )

∵圆C:(x-1)2+(y-1)2=1,∴圆心C为(1,1),半径r=1;∴点P到圆心的距离为|PC|,则|PC|2=(2-1)2+(3-1)2=5,∵圆的切线垂直于过切点的直径,∴切线长|PT|=|

关于双曲线的性质,证明:在双曲线上任意一点P,P处的切线PT平分三角形PF1F2在点P处的内角

看【古希腊】阿波罗尼的《圆锥曲线论》.这是我自己想的:先给出以下引理:如图所示,点P在直线l上运动,定点A,B在l的异侧,求证:当|AP﹣BP|最大时,l平分∠APB证明:作B关于l的对称点B'

设曲线y=x^2在点P处的切线斜率是3,则点P的坐标

曲线的方程是;y=x^2则曲线的斜率方程是:k=y'=2x令k=3,则2x=3x=3/2当x=3/2,y=x^2=9/4所以点P的坐标是:(3/2,9/4)

从直线Y=2x+1上一点P向已知圆x^2+y^2=2引切线,切点为T,若√6≤PT≤4,求点P横坐标的取值范围

设P(a,2a+1);因为T为切点;所以PT^2+R^2=PO^2;PO^2=(a^2+(2a+1)^2)=5*a^2+4a+1;R^2=2;所以PT^2=PO^2-R^2=5*a^2+4a-1;因为

从圆C:X2+Y2-4X-6Y+12=0外一点P向圆做切线PT,T为切点,且绝对值PT=绝对值PO(O为原点)求/PT的

x^2+y^2-4x-6y+12=0,(x-2)^2+(y-3)^2=1圆心Q(2,3),半径1P(x,y),切线|PM|^2=(x-2)^2+(y-3)^2-1^2=x^2+y^2-4x-6y+12

已知圆M经过三点A(2,2)B(2,4)C(3,3)从圆M外一点P(a,b)向该圆引切线PT,T为切点,且|PT|=|P

首先求出过三点的圆的方程由几何关系可知圆心为(2,3)半径为1(x-2)^2+(y-3)^2=1由PT=PO知(a-2)^2+(b-3)^2+1=a^2+b^24a+6b-14=0故P在定直线上

有关椭圆的证明题PT平分三角形PF1F2在点P处的外交,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆 除去长轴的

点P是在椭圆上吧?这个我可以跟你说一下方法,写出来太麻烦,不好意思,先建立坐标系,长轴所在为x轴,长轴垂直平分线为y轴,设出椭圆方程,设点P(x1,y1),点H(x0,y0),F1(-a,0),F2(

已知椭圆方程为(x^2)/(4)+(y^2)/(3)=1,点P在第二象限,且∠PF1F2=120度,求△PF1F2的面积

a^2=4b^2=3c^2=1PF1+PF2=2a=4cos120=(PF1^2+4-PF2^2)/4PF1=-1/2PF1^2+2PF1+4=PF2^2=(4-PF1^2)=16-8PF1+PF1^

若曲线y=1/x在点P处的切线斜率为-4,则点P的坐标

y=1/xy'=-1/x^2-4=-1/x^2x=±2y=±1/2P(2,1/2)(-2,-1/2)

如图,已知点P是⊙O外一点,PS,PT是⊙O的两条切线,过点P作⊙O的割线PAB,交⊙O于A、B两点,并交ST于点C.

证明:连PO交ST于点D,则PO⊥ST;连SO,作OE⊥PB于E,则E为AB中点,于是PE=PA+PB2因为C、E、O、D四点共圆,所以PC•PE=PD•PO又因为Rt△SPD∽Rt△OPS所以SPP

曲线y=x3在P点处的切线斜率为3,则P点的坐标______.

设切点的坐标为P(a,b),则由y=x3,可得y′=3x2,∵曲线y=x3上的点P处的切线的斜率为3,∴3a2=3,∴a=±1∴b=a3=±1∴P点的坐标为(-1,-1)或(1,1)故答案为:(-1,

P为直线x-y+4=0上一点,PT为圆C:(x-1)^2+(y+1)^2=2的切线,求切线PT的最小值

过圆C圆心O(1,-1)做垂直于直线的垂线,与直线的交点是P,过O做平行于直线x-y+4=0的直线与圆C的交点分别为T,PT就是所求的切线因为OP=3根号2OT为半径,长度为根号2三角形OTP式直角三