点P是□ABCD外一点,且∠APC=∠BPD=90°,求证:□ABCD是矩形.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:48:56
∠PAD=60度因为△PBC是等边三角形所以∠PBC=∠PCB=∠BPC=60度所以∠APD=∠BPC=60度所以∠PAD=60度
PA=PC那P就是等腰三角形的顶点.又O是底边上的中点,根据三线合一,那PO垂直了两条相交的直线AC和BD,O又在面外,所以PO垂直面ABCD.(你再整理一下就好了.)
如图,四边形ABCD是边长为2的正方形,其中的大圆弧是半径为1的圆面的14,正方形的面积是4,14圆面的面积是π4,小圆弧是半径为12的圆面的一半,故阴影部分的面积是4-3π4,则点P到点A的距离大于
连接PO平行四边形ABCD,对角线交点平分对角线,所以BO=DO,AO=CO所以,在Rt△DPB中,PO是斜边的中线,所以BD=2PO 在Rt△APC中,PO是斜边的中线,所以AC=2PO所以,A
证明:∵四边形ABCD为矩形.∴AC=BD;AO=OC;BO=OD.又∵PA⊥PC.∴PO=AC/2.(直角三角形斜边的中线等斜边的一半)∴PO=BD/2.(等量代换)∴∠BPD=90°,即PB⊥PD
连接PO直角三角形APC中PO=AO=OC直角三角形BPD中PO=BO=OD所以,AO=BO=CO=DO平行四边形中对角线平分且相等即为矩形
PA=PB与PA⊥平面ABCD矛盾.应该是打错.改成PA=AB即可.AD‖BC平面PCE就是平面PBC,AD‖平面PBC点D到平面PCE的距离=点A到平面PBC的距离AE⊥PB,(正方形对角线).AE
设点E在点B上,先求二面角B-PC-D的大小作BH垂直于PC,H为垂足,连接DH,角DHB为所求的二面角的平面角在△PBC中,BC=1,PB=V2,PC=V3,这是一个直角△,所以BH*V3=V2*1
证明:连接OP,∵PA⊥PC,PB⊥PD,∴△APC和△BPD都是直角三角形,∵四边形ABCD是平行四边形,∴AO=CO=12AC,BO=DO=12DB,∵在直角△APC中,OP是斜边中线,∴OP=1
以B→C为x轴正方向,B→A为y轴正方向建立直角坐标系.设正方形ABCD边长为a(√5
连接OP,则OP分别是RtΔAPC和RtΔBPD斜边上的中线所以OP=OA=OB=OC=CD,即AC=BD所以平行四边形ABCD为矩形
连接PO由PA⊥PC,PB⊥PD,O为AC,BD中点所以P0=1/2AC=1/2BD(直角三角形斜边中线)平行四边形ABCD所以四边形ABCD为矩形!
连AC,BD交于点O,连PO∵PA=PC∴三角形PAC是等腰三角形∴PO⊥AC∵平面PAC∩平面ABCD=AC又∵在菱形中,AC⊥BD且AC∩BD=O∴PO⊥平面ABCD∵PO包含于平面PAC∴平面P
设P到A点的距离PA=x,AB=y且AD=z,则∵PA⊥平面ABCD,AB、AD、BC⊂平面ABCD,∴PA⊥AB,PA⊥AD,PA⊥BC∵BC⊥AB,AB∩PA=A,∴BC⊥平面PAB,可得BC⊥P
连接P与平行四边形的中心(对角线的交点),并延长再问:多谢还有木有其他线?再答:肯定没有其他的了再问:ohthanks!
如图因为PB=PE=PF=PA,所以OA=OB=OE=OF,即O到各边距离相等,所以四边形为圆外切四边形故选 C
证明:∵ABCD是平行四边形∴AO=BO,CO=DO∵∠APC=90°∴PO=1/2AC(直角三角形斜边中线等于斜边一半)同理可得:PO=1/2BD∴AC=BD∴平行四边形ABCD是矩形(对角线相等的
证明:设对角线AC、BD交于点O,连接PO.那么PO是直角△APC、△BPD斜边上的中线,所以PO=AC/2=BD/2,于是AC=BD.故平行四边形ABCD是矩形.
(1)因为ABCD是平行四边形,所以AD//CB,所以∠DAB+∠CBA=180°,因为AP和BP分别平分∠DAB和∠CBA,所以∠PAB+∠PBA=90°,所以∠APB=90°,所以AP⊥PB.(2