点p是正方形abcd的对角线bd上一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:02:23
如图,点P,Q分别是边长1cm的正方形ABCD的边BC和对角线AC上的两个动点,点P从B出发,朝BC方向运动,速度为1c

(1).作PE⊥AC于E则△CEP相似于△CBAPE/AB=CP/AC正方形ABCD中AB=1∴AC=根号2又CP=1-XPE=(1-X)根号2*1/1S△APQ=y=AQ*PE/2=(-根号2/2)

(2013•湖州二模)如图,点P,Q分别是边长为1cm的正方形ABCD的边BC和对角线AC上的两个动点,点P从B出发,朝

(1)如图,过点P作PE⊥AC于E,∵AC是正方形ABCD的对角线,∴∠ACB=45°,∴△PCE是等腰直角三角形,∵点P的速度为1cm/s,∴PC=1-x,∴PE=22PC=22(1-x),∵点Q的

在正方形abcd中,o是对角线ac的中点,p是对角线ac上一动点,过点P作PE⊥PB

⑴  上图.⊿PSE≌⊿PTB﹙ASA﹚,∴PE=PB.. ⊿PBE等腰直角.∠EBF=45º,⊿BCE绕B逆时针旋转90°,到达⊿BAG. &nbs

如图,点P,Q分别是边长为1cm的正方形ABCD的边BC和对角线AC上的两个动点,点P从B出发,朝BC方向运动,速度为1

(1)PQ=1-x,所以△APQ以AQ为的高为(1-x)*0.5*2^0.5.y=0.5*(1-x)^2*0.5*2^0.5.;(0

如图,点P,Q分别是边长为1cm的正方形ABCD的边 BC和对角线AC上的两个动点,点P从B出发,朝B C方向运动,速度

1)x的取值当然是从0到1根据速度来计算,P和Q同时到达C点,△APQ的面积是梯形ABPQ减去三角形ABP的面积,也就是三角形ABC的面积减去三角形PCQ的面积再减去三角形ABP的面积.y=△ABC-

如图,点P,Q分别是边长为1cm的正方形ABCD的边BC和对角线AC上的两个动点,点P从B出发

1)x的取值当然是从0到1根据速度来计算,P和Q同时到达C点,△APQ的面积是梯形ABPQ减去三角形ABP的面积,也就是三角形ABC的面积减去三角形PCQ的面积再减去三角形ABP的面积.y=△ABC-

点P,Q分别是边长为1CM的正方形ABCD的边BC和对角线AC上的两个动点,点P从B出发,朝BC方向运动,速度为1cm/

S△APQ=S△ABC-S△ABP-S△CPQ=1/2-1/2*X-1/2(1-X)*(1-X)=根号2/2*(-X^2+X),X

p,q分别是边长为1cm的正方形ABCD的边BC和对角线AC上的两个动点,点P从B出发

(1)作PE垂直AC于E.显然,AC=根号2,AQ=2X,BP=X,PC=1-X.角ACB=45度,所以,PE=CE=(根号2)/2PC=(根号2)/2(1-X).所以,y=1/2*AQ*PE=-(根

如图,点P,Q分别是边长1㎝的正方形ABCD的边BC和对角线AC上的两个动点,点P从B出发,朝BC方向运动,运动速度为1

1.由题意得y=1/2-x/2-(1/2)√2(1-x)²*√2/2=(-x²+x)/2,0≤x≤1.2.y=1/6=(-x²+x)/2,判别式=-3

正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值为

因为ABCD是正方形,所以D跟B关于AC对称.所以BP等于DP.所以PEPD=PEBP.要使PEBP最小.即B,P,E三点共线.PEBP=BE=AB=4,所以PEPD的最小值为4.

正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值多

连接PB,则PD=PB,那么PD+PE=PB+PE,因此当P、B、E在一直线的时候,最小,也就是PD+PE=PB+PE=BE=AB=4

正方形ABCD中,点O是对角线AC的中点,P为对角线AC上一动点,过点P作PF⊥DC于点F.如图1,当点P与点O重合时,

连接PD①∵AB=ADAP=AP∠BAP=∠DAP=45°∴△APB≌△APD∴∠ABP=∠ADP∠PBC=∠PDF∵PE⊥PB∴在四边形BCEP中∠PBC+∠PEC=180°∵∠PEF+∠PEC=1

如图,四边形ABCD,BEFC都是正方形,点P 是AB边上一个动点(不与点A,B重合),过点P作DP的垂线交对角线BF于

连接MP,证明DMP全等PBQ(角边角)第二个,相等的,截个DN=PB,还是个证明全等……

正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点.

①求证:∠PDE=∠PED;证明:∵四边形ABCD是正方形∴AB=ADAC平分∠BAD和∠BCDAC⊥BD∴∠BAC=∠DAC=∠ACD=∠CDB=45°又∵AP是公共边∴△BAP≌△DAP∴BP=D

边长为4的正方形ABCD中,点o是对角线AC的中点,P是对角线AC上一动点.

 提示:⑴过P作BC的垂线,垂足为G.∵P是AC上的点,∴PG=PF,又 ∠BPG+∠EPG=∠RPG+∠EPF=90°,  将⊿PBG绕P逆时针旋转90°;与

如图,在正方形ABCD中,对角线的长为2,动点P沿对角线BD从点B开始向D运动

在直角△BDC中,BC=DC,BD=2,由勾股定理得:BC=√2,过点P作BC的垂线,垂足为E,得等腰直角△BPE,那么PE=(√2/2)x,所以S△PBC=1/2BC*PE=1/2*√2*√2/2*

如图所示,正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过

连接PD①∵AB=ADAP=AP∠BAP=∠DAP=45°∴△APB≌△APD∴∠ABP=∠ADP∠PBC=∠PDF∵PE⊥PB∴在四边形BCEP中∠PBC+∠PEC=180°∵∠PEF+∠PEC=1

正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点

题目显然有问题.DF怎么可能与CF垂直呢? F点在CD上面.应是CF=DF吧.(1)如图,连接PD,作PG⊥BC于G.1.易证明PF=PG,∠BPG=∠EPF.因此,三角形BPG与EPF全等