点z=0是函数f(z)=sinz-z z³的奇点,其类型为?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:53:37
设函数f(x,y,z)=yz^2 e^x,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则函数f(x,y,

df(x,y,z)/dx=[d(z^2)/dx]*y*e^x+y*z^2*(de^x/dx)=2zye^x(dz/dx)+y*z^2*e^x另,由x+y+z+xyz=0求dz/dx两边对x求偏导1+0

求函数z=sinx+siny+sin(x+y)(0

z对x的偏导=cosx+cos(x+y)=0时,cosx=-cos(x+y)=cos(pi-x-y),所以x=pi-x-y.同理z对y的偏导=0时,有y=pi-x-y.所以x=y=pi/3.此时z=3

求z是函数y=根号3cos(3x-z)-sin(3x-z)是奇函数

原题的意思是:z为何值时,函数y=√3cos(3x-z)-sin(3x-z)是奇函数?y=2[(√3/2)cos(3x-z)-(1/2)six(3x-z)]=2[cosπ/6cos(3x-z)-sin

设z(x,y)是方程F(x-y,y-z,z-x)=0所确定,其中F为可微函数,则δz/δx+δz/δy=?

令u=x-y,v=y-z,w=z-x,则F(u,v,w)=0,方程两边对x求偏导,其中z看做x,y的函数,则ðF/ðu*ðu/ðx+ðF/ð

f(x,y,z)是三元函数,f(x,y)是二元,z=x+y这个是几元?x+y+z=0又是几元?

这两个都是三元方程,不是函数了.再问:这个叫隐函数。。。再答:不好意思,隐函数不一定是函数,和“函数”完全是两个概念。再问:hi,我问的是它是函数的情况再答:如果不加任何其他限制条件的话,你可以认为它

复变函数 f(z)=|z| 讨论可导性.

你好此函数仅在原点处可导谢谢

设Z=F(X,Y)是由方程E^Z-Z+XY^3=0确定的隐函数,求Z的全微分Dz

对方程两边求全微分得:(e^z-1)dz+y^3dx+3xy^2dy=0(方法和求导类似)移项,有dz=-(y^3dx+3xy^2dy)/(e^z-1)

设z=f(x,y)是由方程e^z-Z+xy^3=0确定的隐函数

e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/

复变函数问题,z=0是函数f(z)=1/[z^2(e^z+1)]的多少级极点?

是二级极点!满足极点定义z0=0;n=2;φ(z0)=e^0+1=2不等于零再答:��ӭ׷�ʣ�

设函数f(z)=1/((z+10)*(z+3)*(z-2)) 重赏!

首先f(z)的孤立奇点只有z=2,z=-3,z=-10这三个,而f(z)在同一个圆环域内部展开成洛朗级数是唯一的,所以本题要找的其实就是分别以这三个孤立奇点为圆心的最大解析圆环域有多少个,对于z=2,

HELP ME已知函数F(x)=sin(wx+z)(w大于0,0小于等于Z小于等于PAI)是R上的偶函数,其图像关于点M

∵z≥0∴该函数图象是由f(x)=sinwx左移∵函数是R上的偶函数∴图象关于Y轴对称,∴图象由f(x)=sinwx左移(2k+1)/4个周期,k∈0、1、2、3、4、6……∵图象是关于点M((3/4

3道高数题,1,函数F(x,y,z)=(e^x) * y * (z^2) ,其中z=z(x,y)是由x+y+z+xyz=

1、隐函数对x求导得1+az/ax+yz+xy*az/ax=0,故az/ax=-(1+yz)/(1+xy);F对x求导得aF/ax=e^x*y*z^2+e^x*y*2z*az/ax;当x=0,y=1时

方程f(y/z,z/x)=0确定z是x,y的函数,f有连续的偏导数,且f'v(u,v)≠0.

用微分.再问:能不能用复合函数求导解下再答:用的就是复合函数求导方法。函数t=f(y/z,z/x)是由t=f(v,u)和v=y/z、u=z/x三个函数复合而成的。解答过程省略了:df(v,u)=0;f

已知函数f(x)=3sin(kx/5+π/3)(k>0,k∈Z)

对称轴k*π/6*1/5+π/3=π/2+nπ,n为整数k=30n-5任意整数区间出现一个最大最小值,说明函数周期要小于等于12π/(k/5)=10π所以k最小取值为55

HELP已知函数F(x)=sin(wx+z)(w大于0,0小于等于Z小于等于PAI)是R上的偶函数,其图像关于点M((3

∵函数f(x)=sin(ωx+z)(w>0,0≤z≤π)是R上的偶函数∴f(-x)=f(x)→sin(-wx+z)=sin(wx+z)→-sinωxcosz=sinωxcosz∵sinωx不恒等于0,

将函数 f(Z)=Z/Z+2展开成Z-2的幂级数

f(z)=1-2/(z+2)=1-2/[(z-2)+5]=1-0.4*1/[1+(z-2)/5]=1-0.4*Σ【-(z-2)/5】^n(0到+∞)

设z是由方程z=sin(xz)+xy确定的函数,求z对x的二阶导数,x=0,y=1.

这是隐函数.二阶导再导一次就是.方程两边对x求导,得z'=cos(xz)(xz)'+y(y不是关于x的函数吧?)=zcos(xz)+xz'cos(xz)+y所以z'=[zcos(xz)+y]/[1-x

证明:函数F(Z)=(ReZ)^2在Z=0点可导,但在该点不解析

令z=x+iy,则f(z)=x^2,f(0)=0,x、y->0时,lim|(x^2-0)/(x+iy)|=lim|x-iy||x^2|/|x^2+y^2|0,从而f'(0)=0但对于0附近任意一点,其

高等数学(1)证明方程sin z =(x^2)yz在点(0,0,0)附近能确定可微的隐函数z=f(x,y) (2)求偏导

sinz = x² yz; g(x,y,z)=sinz-x²yz=0;满足以下三条件:g'(x)=2xyz,g'(y)=-x