球抛物线y=2x² 4x 1的对称轴方程和最大值(或最小值),然后画出函数图像
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:51:14
y1=2(x1)^2y2=2(x2)^2KAB=(y2-y1)/(x2-x1)=2(x1+x2)=-1则有x1+x2=-1/2x1x2=-1/2y1+y2=2(x1)^2+2(x2)^2=2(x1+x
关于x轴对称,把y换成-yy轴对称,把x换成-x原点,把x换成-x,y换-y
由y1−y2x1−x2=−1,y1+y22=x1+x22+m,2x1x2=−1,以及y1=2x12,y2=2x22可得 x2−x1=y1−y2=2(x21−x22),⇒x1+x2=−12,2
设P(x,y)是抛物线上的任意一点,P‘(x’,y‘)是其关于直线x-y+1=0的对称点则(y-y')/(x-x')=-1且(x+x')-(y+y')+2=0解得2y'=x+2x'+1=y再联立y^2
由题意可知A、B两点经过F(1,0)点,且直线斜率一定存在,设直线AB:y=k(x-1),(k>0),与椭圆方程联立,k²x²-(2k²+4)x+k²=0x1+
解据题意抛物线焦点为(1,0)当过焦点的直线斜率不存在时,直线方程为x=1则x1=1,x2=1,y1=2,y2=-2y1y2/x1x2=-4当直线斜率存在时,设为k则直线方程为y=k(x-1)那么y1
A,B在抛物线y=2x^2上则y1=2x1^2y2=2x2^2A(x1,2x1^2)B(x2,2x2^2)AB关于直线y=x+m对称则直线AB与直线y=x+m垂直斜率乘积为-1即[(2x2^2-2x1
设f(x)=x^2+bx+c,则题中f(x)-x=x^2+bx-x+c与x轴交点的横坐标为X1、X2=x1+1,设f(x)-x=(x-x1)(x-x1-1)f(x)=(x-x1)(x-x1-1)+xy
两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,所以AB的中点((x1+x2)/2,(y1+y2)/2)在直线y=x+m上.所以m=0.5[(y1+y2)-(x1+x2)]由因为AB在抛
写出AB方程:y=-x+b联立用韦达定理解出x1+x2,y1+y2中点在y=x+m上代入即得m
两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,所以AB的中点((x1+x2)/2,(y1+y2)/2)在直线y=x+m上.所以m=0.5[(y1+y2)-(x1+x2)]由因为AB在抛
答:设抛物线C上的点为(m,n),设其关于直线x+y-2=0的对称点为(-w^2,2w)则两点的中点(m/2-w^2/2,n/2+2w/2)在直线x+y-2=0上:(m-w^2)/2+(n+2w)/2
y^2=4x于y=x+1的方程简便算法:将y=x+1,x=y-1带入方程y^2=4x就得出来了即y=(x^2+2x+2)/4
焦点坐标(-1/2,0)y=k(x+1/2)y^2=-2xk^2x^2+(k+2)x+k^2/4=0x1+x2=(k+2)/k^2=6k=5/6k=-2/3
由AB两点斜率为-1可得Y1-Y2=X2-X1.(*)y2=2x,可消去(*)式x,整理得Y1+Y2=-2.AB中点在直线上,有:Y1+Y2=X1+X2+2b.结合抛物线有:X1+X2=[(Y1+Y2
/>利用抛物线的定义即可抛物线x²=(1/4)y准线是y=-1/16,焦点F(0,1/16)利用抛物线的定义|AF|=y1+1/16,|BF|=y2+1/16∴|AB|=|AF|+|BF|=
A,B在抛物线y=2x^2上则y1=2x1^2y2=2x2^2A(x1,2x1^2)B(x2,2x2^2)AB关于直线y=x+m对称则直线AB与直线y=x+m垂直斜率乘积为-1即[(2x2^2-2x1
由题得:线段AB的斜率为,kAB=(y1-y2)/(x1-x2)=-1因为,A(x1,y1)、B(x2,y2)是抛物线y=2x^2上两点所以,y1=2x1^2,y2=2x2^2所以,(y1-y2)/(
两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,所以AB的中点((x1+x2)/2,(y1+y2)/2)在直线y=x+m上.所以m=0.5[(y1+y2)-(x1+x2)]由因为AB在抛
答:抛物线y=3x^2+6x+4=3(x+1)^2+1抛物线y=-3x^2-6x-2=-3(x+1)^2+1对称轴都是x=-1,顶点都是(-1,1)前者开口向上,后者开口向下所以:两个抛物线关于直线y