用常数变易法求解(dy dx)^2-y=2e^x (e^x-1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 15:35:03
由微分方程dydx=2xy,得dyy=2xdx(y≠0)两边积分得:ln|y|=x2+C1即y=Cex2(C为任意常数)
常数变易法是求解微分方程的一种很重要的方法,常应用于一阶线性微分方程的求解.数变易法中,将常数C换成u(x)就可以得到非齐次线性方程的通解.用u(x)代替C后,既能满足齐次方程,又能产出非齐次项,故一
所以看过高数书的人总是觉得“常数变易法”来的那么凶那么直接,那么神奇.对于一阶线性微分方程y'+Py=Q以前我一直在考虑常数变易法的实质是什么,我觉它就是个特殊的变量代换法.在解齐次方程时用y=ux代
求微分方程y'-y=ex的通解为了求这个方程的解,先考虑齐次线性方程:dy/dx-y=0,即有dy/y=dx,积分之得lny=x+lnC₁,于是得其通解为y=e^(x+lnC₁
您想得太复杂了.解方程是寻求方程的解,是探索性的过程.常数变易法本质就是换元法,只不过换元的形式有点特别,有些复杂而已.它无非是假设方程的解是y=u(x)e^(积分),代入后可将方程转化,求得出,就得
南京农行农行规划将每年
因为这是能够经得起实施检验的真理.具体证明或说明可以参考一下《常微分方程》的教材.
解其对应的齐次常系数线性微分方程时,其解必定含有一个任意常数C,把常数C看作是个变量,并假定就是非齐次常系数线性微分方程的一个特解.将其代入非齐次常系数线性微分方程,再次确定C(x)..这种方法就叫常
这是一阶线性微分方程,其中P(x)=1,Q(x)=e-x∴通解y=e−∫dx(∫e−x•e∫dxdx+C)=e−x(∫e−x•exdx+C)=e−x(x+C).
y=(1-2x²)/(1+2x²)=-(2x²-1)/(2x²+1)=-[(2x²+1)-2]/(2x²+1)=-[1-2/(2x²
因为用u(x)代替C后,既能满足齐次方程,又能产出非齐次项,故一定可以找到合适的u(x),使得它由微分算子运算后得到原微分方程的非齐项,所以原微分方程的通解都可以写成y2=u(x)y1(x),y1(x
A2后边的那个积分为sqrt(pi/a^2),随便找个数理方法的课书都有这个积分的值.如果把a^2提出来,你就发现这是个高斯分布,从负无穷到正无穷的概率为1.波函数的归一化就是要使它的概率密度和为1.
好久没做过的都忘记了呢
常数变易法是一种利用假设求特解的办法.按照解得理论:非齐方程通解=齐次方程的通解+非齐方程的一个特解现已知齐次方程的通解为CY(x),人们推测:把C换成C(x),将C(x)Y(x)代入非齐方程,如果能
常数变易法是求解微分方程的一种很重要的方法,常应用于一阶线性微分方程的求解.数变易法中,将常数C换成u(x)就可以得到非齐次线性方程的通解.用u(x)代替C后,既能满足齐次方程,又能产出非齐次项,故一
自然是一阶线性方程之中用到的对于y'+P(x)y=Q(x)先找出齐次方程的解y'+P(x)y=0解为y=Ce^[-∫P(x)dx]令C=C(x)可再设y=C(x)e^[-∫P(x)dx],这是常数变易
常微分方程要考,但是常数变异法不用掌握了,基本都是套公式,直接算结果的,根本用不到常数变异法查看原帖
y'+y=e^-x是常系数线性非齐次方程法一:求出齐次方程y'+y=0(r'+1=0,r'=-1)的通解为y=Ce^-x再求y'+y=e^-x的一个特解,e^(-x),q=-1,r'=-1,设解为y=
a=0则x≠0a≠0x²=12a²x²+x^4x^4+(12a²-1)x²=0x²[x²+(12a²-1)]=0所以x&