用行列式定义计算下列各项行列式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 20:40:23
1.不同行和列的数的乘积*(-1)的逆序数,再求和.所以1中逆序数(n-1)即行列式的值为{(-1)^(n-1)}*n!2.用第一行*1/a0分别加到第二三.最后一行,则行列式的值是对角线上的数的乘积
(1)若x=0或y=0,有两行相等行列式等于0当x≠0且y≠0时D=r2-r1,r3-r1,r4-r11+x111-x-x00-x0y0-x00-yc1-c2+(x/y)c3-(x/y)c4x1110
利用下列性质比较简单:以同一常数乘任意一行(列)上的所有元素,再将其积加于另一行(列)的相应元素,这个行列式的值不变.
c1+c2+c3第2,3列加到第1列2(x+y)yx+y2(x+y)x+yx2(x+y)xyr2-r1,r3-r12(x+y)yx+y0x-y0x-y-x=2(x+y)[-x^2+y(x-y)]=-2
正好今天才睡醒上来逛逛,还没有睡醒,头有点晕,如果错了不要怪我.这个题目是考研练习题目(属于考研题目中简单的十分可怕的那种,只会是平时练习,考研绝对不考的那种题目),同学大一就做这样的题难度是大了点,
利用性质展开计算经济数学团队为你解答.
非零项:a11a22a34a43=1,带负号-a11a24a32a43=1,带正号+所以,D=-1+1=0
第一列最后一个数为n,以第一列展开,行列式=(-1)的2n-1次方*10...002.0003..0..0...n-1=(-1)的2n-1次方*n!
根据行列式的定义,从行列式不同行(或列)中取数的全排列,任意一种排列中全部数字之积,再把所有排列求出的积求和等于行列式的值.先假设行列式中,a(ij)≠0【其中,i=1,2,……,n;j=1,2,……
因为在不同行不同列的非零元素的积只有:n*(n-1)*…*1=n!反序数为n-1根据定义:d=(-1)^(n-1)*n!有不懂欢迎追问再问:不太懂呢能不能再细点没学过线性代数。。。再答:建议你先看看书
根据定义,取a1,a2,a3,a4所在位置(1,4)(2,3)(3,2)(4,1)得出N(1234)=0,N(4321)=6均为偶数,故为正;其他各项中至少含有一个零元素,故其他项均为0,故D=a1a
解:由行列式的定义,定义中的每一项是由行列式中每行每列恰取一个数相乘得到的.由于3,4,5行中的3,4,5列元素都是0所以行列式定义中的每一项都等于0故行列式等于0.再问:没有具体的解答式子吗?就这样
D=(-1)^t(1234)a11a22a33a44+(-1)^t(1324)a11a23a32a44=a11a22a33a44-a11a23a32a44
你按照最后一列展开会发现a2n到ann的余子式第一行都为0那么他们都为0同理你每一次都按照最后一列展开就是对角线之积前面的系数(-1)^[n+1+n+n-1+……3)=(-1)^[(n+4)*(n-1
第一行只能远a1n,第二行只能a2(n-1),最后后只能是副对角线元素乘积,乘以(-1)^τ(nn-1,21)再答:就是乘以(-1)^(n(n-1)/2)再答:其余项都是0就不用考虑咯
再问:定义再答:用定义就像楼上说的要24项了,太麻烦了!~再问:不用定义我会啊,
∵除a1(n-1)、a2(n-2)、...、a(n-1)1、ann外,其余元素为0,且这些元素都在不同行不同列中∴行列式展开式中,除这些元素的连乘积外,其它项的值为零所以行列式的值为这些元素的连乘积乘
D=(-1)^t(99,98,……321)99!=(-1)^(99*100/2)99!=99!再答:Sorry,应该是D=(-1)^t(99,98,……321)99!=(-1)^(99*98/2)99
从第n行第n列开始降阶,写成x*D[n-1]+y*xy0...00xy..0.y00..0后面那个行列式的值很好计算,毕竟最后一行只有一个不是零么然后楼主根据n阶与n-1阶的关系可以采用递归.