直线y=kx b与抛物线y=1 4x的平方交于(x1,y1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:40:55
抛物线C2:y^2=2px(p>0),此抛物线焦点坐标F2为:(p/2,0),抛物线C1:y=ax^2+bx,此抛物线焦点坐标F1为:[-b/2a,(4ac-b^2+1)/4a]∵抛物线C1:y=ax
y值相等,求出X,直接带入任意一个方程式
根据题意有x=-2x^2解这个方程有x1=0,x2=-1/2所以对应的y1=0,y2=-1/2直线y=x与抛物线y=-2x的平方的交点是(0,0)(-1/2,-1/2)
联立两方程,求出的点就是抛物线与直线的交点,没有则说明两线没有交点.
题目有误,请改正.再问:双曲线改为x^2-y^2/3=1再答:(1)F(1,0),抛物线方程是y^2=4x,①(2)把l:y=k(x-2),即x=my+2,②其中m=1/k,代入①,得y^2-4my-
将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=
设C(x1,y1)D(x2,y2)由题目可知:p=4那么焦点F(2,0)因为直线的倾斜角为45,所以斜率为1所以直线方程为:y=x-2带入抛物线方程中有:(x-2)^2=8x即是:x^2-12x+4=
解题思路:本题考查直线与圆锥曲线的关系,解决的关键在于联立方程,利用韦达定理,与条件“向量OM+ON与弦MN交于点E,若E点的横坐标为3/2”结合来解决问题,属于难题.解题过程:同学你好,如对解答还有
直线y=ax+1恒过定点(0,1)该定点在抛物线内,所以不论a取何值(前提是a存在),都与抛物线有两交点.
将点A带入抛物线n=2^2=4所以A(2,4)再将A带入直线求出m=y-3x=4-6=-2所以直线y=3x-2联立抛物线和直线x^2=3x-2x^2-3x+2=0x1=1,x2=2所以另外一个交点等横
直线y=x-2与抛物线y=ax+bx+c相交于(2,m),(n,3)两点则点(2,m),(n,3)在直线y=x-2上则m=2-2m=03=n-2,n=5所以点(2,0),(5,3)因为抛物线的对称轴是
3x+4=x2解方程得:x=4或x=-1x=4时,y=16x=-1时,y=1交点坐标为(4,16)(-1,1)
设两点存在,分别为A(a2,a),B(b2,b),设AB的斜率为k′,k′=-1k,∴k′=a−ba2−b2=1a+b=-1k,∴a+b=-k,b=-k-a,设M(m,n),则m=a2+b22=(a+
j结果是2倍根号5除以5.将(1,2)先代入y^2=2px.求出p=2.即可知抛物线焦点为(1,0).再代入直线方程,为2x+y-4=0.然后是点到直线公式的应用.用Word文档的特殊公式粘不过来.所
(1)由y=2x²,y=4x消y得x=0或x=2故面积s=∫(0--2)4x-2x²dx=2x²-(2/3)x³|(0--2)=8/3(2)设直线方程为y=4x
y=-x^2与y=-4围起来的面积
令sqrt(x)=xx=0,x=1S=int(sqrt(x)-x,x=0..1)=(2x^(3/2)/3-x^2/2,x=0..1)=1/6
S/2=∫(0--1)dy∫(√(y/2)--√y)dx说明:括号内意为积分下限到上限.S/2=∫(0--1)[(√2-1)/√2]√ydy=[(√2-1)/√2]*2/3*y^3/2(y由0--1积
解方程组y²=2pxy=x得y^2=2pyy=0y=p所以交点为(0,0)和(p,p)因为P(2,2)为AB的中点所以(0+p)/2=2p=4