直角坐标系中两条直线互相垂直

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 17:02:35
谁证明下,直角坐标系中,两直线垂直斜率互为负倒数

设两条直线的斜率为k1,k2,倾斜角为a,b如果两条直线垂直,那么它们之间的夹角为90度所以tan(a-b)=tan90=(tana-tanb)/(1+tanatanb)=无穷大因为tana=k1,t

平面直角坐标系中两直线互相垂直

如果两直线互相垂直,那么它们的斜率的乘积为—1.设L:y=kx+b,k为“斜率”,“斜率”的几何意义是直线与x轴正半轴的夹角(即“倾斜角”)的正切值.如y=x+b,倾斜角45°,k=tan45°=1.

当两条直线相交成直角时 这两条直线互相垂直,它们的位置关系是

平面直线位置关系有三种:平行,相交,重合.这里的位置关系是相交.再问:它们的位置关系是什么或什么我估计要答异面之类的吧,因为我们最近在学直线与平面垂直的判定再答:sorry,以为是初中生,所以以为是“

在平面直角坐标系中两垂直直线的斜率关系?

注意:两垂直直线直线的斜率乘积等于-1可以先用y=k1x和y=k2x来证明,因为任何直线都可以平行移动到这两条直线上,而且关系不会变在用直角三角形做就可以了!

平面直角坐标系中两直线互相垂直时,两直线的函数解析式(y=kx+b)中的k的关系是什么?为什么?

设一直线L1为:y=kx+b,另一直线L2为:y=mx+a,两直线相交于点A(p,q)则有:q=kp+b=mp+a设L1上另一点为B(p+1,yB),L2上另一点为C(p+1,yC),则:yB=q+k

空间直角坐标系垂直证明

向量MN=(0,a,a);向量AB=(a,2a,-2a);向量BC=(-2a,0,0)向量MN*向量AB=0;向量MN*向量BC=0所以MN垂直AB;MN垂直BC;显然AB和BC是相交的于是MN垂直于

【初中直角坐标系】当两个一次函数中k的积相乘为 -1时,两条直线互相垂直.

这个在初中不要求掌握的;两直线垂直,则k1k2=-1按结论记住就可以啦;此时b之间没有联系;即垂直与b无关;如果你想自己探索,可以通过特殊的直线来考虑;由于解一般的两条直线的交点坐标运算很麻烦,所以到

空间直角坐标系中如何证明两直线垂直(有坐标)

利用两个直线的的方向向量的数量积为0即:若A(x1,y1,z1),B(x2,y2,z2)AB一个方向向量为(x2-x1,y2-y1,z2-z1)若C(x3,y3,z3),D(x4,y4,z4)CD一个

怎样证明平面直角坐标系中两条直线互相垂直?

(1)一条直线斜率为0,另一条直线斜率不存在.(2)两直线斜率之积为-1

凡是两条互相垂直的直线,都能组成平面直角坐标系,判断这句话的正误,说明理由.

错,必须是在同一个内平面,垂直且相交的直线才能组成平面坐标系

在平面直角坐标系中 y=kx 的两条直线互相垂直.k有什么关系.

两条直线垂直,则斜率的乘积=-1.即k的乘积=-1.

空间直角坐标系中如何证明两直线垂直(要公式)

利用两个直线的的方向向量的数量积为0即:若A(x1,y1,z1),B(x2,y2,z2)AB一个方向向量为(x2-x1,y2-y1,z2-z1)若C(x3,y3,z3),D(x4,y4,z4)CD一个

在平面直角坐标系中,互相垂直的一次函数图像K值有什么规律?

k1*k2=-1.切记,k1,k2均不能等于0,如果等于0,则该关系式不满足

在平面直角坐标系中,两直线垂直,斜率k是什么关系?

k1*k2=-1这是因为:k1=tanp,k2=tanq由几何关系,|p-q|=90度所以k1*k2=-tanp*cotp=-1所以两个斜率乘积是-1

平面直角坐标系中两直线互相垂直时,两直线的函数解析式(y=kx+b)中的k和b的关系是什么?

平面直角坐标系中两直线互相垂直时,两直线的函数解析式(y=kx+b)中的两个斜率k1和k2的关系是k1*k2=-1b1与b2之间没有关系

为什么当两条直线互相垂直时,所形成的四个角都是直角

呃...因为垂直,所以形成的其中一个角是90度,又因为平角为180度,所以其临角为90度,同理,余下两个角也为90度,所以四个角都是直角.不知道对不对、、哪里的问题啊.

平面直角坐标系中,两条互相垂直的直线,有什么特点.

两条直线的K值相乘为-1绝对是正确的