10设,其中具有二阶连续偏导数,求与.考研真题

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:17:57
设f(x)具有二阶连续导数,求∫xf''(x)dx

∫xf''(x)dx=∫xdf'(x)=xf'(x)-∫f'(x)dx=xf'(x)-∫df'(x)=xf'(x)-f(x)+C

设f(x)在[0,1]上具有二阶连续导数,且|f''(x)|

f(0)=f(x)+f'(x)(0-x)+0.5f''(a)(0-x)^2f(1)=f(x)+f'(x)(1-x)+0.5f''(b)(1-x)^2两式相减,移项,取绝对值得|f'(x)|=|f(1)

设F(x,y,z)=0,且F具有二阶连续偏导数,求z对x的二阶偏导数

(偏导数的符号用a代替了)两边对x求偏导数:Fx+Fz*az/ax=0az/ax=-Fx/Fz两边对x求偏导数:a^2z/ax^2=-(FxxFz+FxzFz*az/ax-Fx(Fzx+Fzz*az/

设f(x)在点a的某领域内具有二阶连续导数,求

首先要说明:不是求“在x→0时的极限值”,而是求“在h→0时的极限值”因为设f(x)在点a的某领域内具有二阶连续导数,所以:lim(h→0){[f(a+h)+f(a-h)-2f(a)]/h^2}.是(

设z=f(xy,y/x),其中f具有二阶连续偏导数,求a^2z/ax^2,a^2z/axay.

先求一阶导数,由于f有两个分量,要先对f的两个分量求导,再根据复合函数求导,两个分量对x求导,也就是z对x的一阶导数是:f1*y-f2*y/x^2,接下来再让这个式子对x求导,注意,这里利用乘法的导数

高数偏导题.设z=f(x+y,x-y,xy),其中f具有二阶连续偏导数,求dz与∂²z/ͦ

09年考研题.dz就是对x和y的偏导的和.dz=(f'1+f'2+yf'3)dx+(f'1-f'2+xf'3)dy∂²z/∂x∂y就是对x求导,在对y求导

设函数f(u,v)具有二阶连续偏导数,z=f(x,xy),则∂

∵z=f(x,xy),令u=x,v=xy∴∂z∂x=f′1+yf′2∴∂2z∂x∂y=∂∂y(f′1+yf′2)=∂f′1∂y+∂∂y(yf′2)═(∂f′1∂u∂u∂y+∂f′1∂v∂v∂y)+f′

设函数z=f(sinx,xy),其中 具有二阶连续偏导数,求ε^2z/εxεy

设u=sinx,v=xydz/dx=dz/du*du/dx+dz/dv*dv/dx=cosxf1'+yf2'd^2z/dxdy=d(dz/dx)/dy=(-sinx)f1'+cosx*df1'/dx+

设函数z=f(xy,y/x)具有二阶连续偏导数,求 a^2z/axay

设u=xy,v=y/x,则z=f(u,v),所以ðz/ðx=f'1*ðu/ðx+f'2*ðv/ðx=yf'1-yf'2/x^2,注意到f'1

设Z=f(x+y+z,xyz),f具有二阶连续偏导数,求∂z/∂x.

f后面的1与2是下标.∂z/∂x=f1'+yzf2'

具有二阶连续偏导数,具有二阶连续导数,分别代表了什么?具有一阶连续偏导或一阶连续导数呢

首先偏导数是针对二元或二元以上的函数,导数是针对一元函数;二阶偏导数连续,就是说二阶偏导数存在,并且二阶偏导数是连续函数;二阶导数连续就是说二阶导数存在,并且这个二阶导函数是连续函数;一阶类似.希望可

一个二元函数具有二阶连续偏导数是什么意思

二元函数f(x,y)具有二阶连续偏导数指的是偏导数    fx(x,y),fy(x,y)关于(x,y)是连续的.再问:二阶偏导数应该是对二元函数求两次偏导吧?再答:  哦,看走眼了。应该是:二元函数f

设z=x^3 f(xy,y/x),其中f具有二阶连续偏导数,求az/ax.

设u=xy,v=y/x,则z=x³f(u,v),au/ax=y,av/ax=-y/x²故az/ax=3x²f(u,v)+x³f'u(u,v)(au/ax)+x&

已知z=f(e-xy,x/y)其中f具有二阶连续偏导数,求az/ax

先等会,十分钟再问:嗯嗯,谢谢再答:你确定括号里面是e-xy?再问:是e^(-xy)再答:哦再问:再答:图片发不过去再答:我告诉你怎么做吧再问:啊?QQ邮箱再问:可以吗再问:嗯嗯再问:62630868

设函数f(x)具有二阶连续导数,且f"(x)不等于0.

根据泰勒公式f(x+h)=f(x)+f'(x)h+(1/2)f''(x)h^2+o(h^2)于是:f(x)+hf'(x+θh)=f(x)+f'(x)h+(1/2)f''(x)h^2+o(h^2)θ{[

Z=f(x+y,xy)其中f具有二阶连续偏导性,求二阶偏导数?

再问:你写这些我都明白,可我不明白这个是怎么计算来的?你就帮我把这个计算过程还有方法详细列下。再答:我很好奇你居然都明白,还问这怎么回事!我真搞不懂你到底明白在哪了?我不说的很详细吗?这是复合函数求导

设u=f(x,x/y),其中f具有二阶连续偏导数,求u对x的二阶连续偏导数,

再问:请问那个f12的二阶导数是怎么来的啊再答:前面两个都来自f1'对x的偏导数再问:哦再问:再问您一下,还是这道题,先对x再对y求二阶连续偏导怎么做啊再问:u先对x再对y再答:再问:多谢再问:请问最