矩阵ap=p,其中p=求a12

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/08 19:47:31
A=(0 2 -2 2 4 4 -2 4 -3) 求一可逆矩阵P,使P*-1AP为对角矩阵.

1、先令|A-λE|=0求出特征值为λ1=1,λ2=6,λ3=-6;2、分别代入(A-λE),进行初等变换变为行最简型,得到基础解系ξ1=(-2,0,1),ξ2=(1,1,-1)ξ3=(1,-1,2)

以知矩阵A=[0-11,-101,110],求正交矩阵P和对角矩阵A,使P^-1*AP=A

A是实对称矩阵,可以正交对角化按|A-λE|=0,求得λ=0,0,3求出对应的特征向量:[10-1],[01-1],[111]特征向量已经正交,对其进行标准化[1/√20-1/√2][01/√2-1/

设有矩阵A、P和B三个,AP=PB,其中P= -1 -4 B=-1 0 1 1 0 2 求A的11次方(A^11)

A=PBP^(-1),A^11=PBP^(-1)PBP^(-1)……PBP^(-1)消去PP^(-1)后,得A^11=PB^(11)P^(-1)不难求得,B^11第一行为-1和0,第二行为0和2^11

求合同矩阵转换中的P已知A为实对称矩阵,B为对角矩阵,A与B合同但不相似,求可逆矩阵P,使P'AP=B.(P'为P的转置

构造分块矩阵AE同时,对矩阵用初等列变换(同时对上半块用相应的初等行变换)把上半块化为B最后化为BP则P即为所求.再问:对整个分块矩阵做初等列变换,而只对上半块做相应的初等行变换是吧?如果是这样的话,

已知A=(2 0 4 0 5 0 4 0 2) ,求一正交矩阵P,使p^1AP 成为对角矩阵.

101010-101求出来直接正交,都不用正交化

设矩阵A=0,-1,1;-1,0,1;1,1,0求一个可逆矩阵p,使p-1AP为对角阵

设对应的二次型矩阵A的特征值为λ则|A-λE|=-λ-11-1-λ111-λ第2列加上第3列=-λ01-1-λ+1111-λ-λ第3行减去第2行=-λ01-1-λ+1120-λ-1按第2列展开=(-λ

设实对称矩阵A=1 -2 0 -2 2 -2 0 -2 3 求正交矩阵P,使P^-1AP为对角矩阵.

做特征值分解就好了.求A的特征值,即det(A-λI)=0,可得λ=5,2,-1所以,A-5I=-4-20-2-3-20-2-2所以,特征向量为c(1,-2,2),取长度为1的,得(1/3,-2/3,

设A= ,求一个正交矩阵P,是的P^(-1)AP为对角阵

λE-A=λ-2000λ-10-1λ|λE-A|=λ^2(λ-2)-(λ-2)=(λ+1)(λ-1)(λ-2)所以矩阵A的特征值为λ1=-1,λ2=1,λ3=2当λ1=-1时,方程组(λE-A)X=0

六、已知矩阵 求可逆矩阵P和对角矩阵∧,使A与对角矩阵∧相似,即有P-1AP=∧..

|A-λE|=(1-λ)^2(6-λ).A的特征值为1,1,6(A-E)X=0的基础解系为:a1=(0,1,0)',a2=(1,0,-1)'(A-6E)X=0的基础解系为:a3=(1,3,4)'令P=

矩阵A=(0,-1,0,1,0,0,0,0,-1),矩阵B=P^-1AP,其中P为三阶矩阵,求B^2008-2A^2

A^2=[-1,0,0;0,-1,0;0,0,-1]B^2008=P^-1APP^-1AP.=P^-1(A^2008)P=P^-1(((A^2)^2)^502)))P=P^-1(E^502)P=P^-

已知A=(1 -3 3…,求3阶可逆矩阵P和3阶对角矩阵,是的P^-1AP=3阶对角矩阵.

解:|A-λE|=1-λ-333-5-λ36-64-λr1-r2,r3-2r2-2-λ2+λ03-5-λ304+2λ-2-λc2+c1+2c3-2-λ0034-λ300-2-λ=(4-λ)(2+λ)^

设A为n阶方阵,因此A可以化为约旦标准型,即存在可逆矩阵P,使得 AP=PJ,其中J为约旦标准型矩阵,如何求P?

首先必须求最小多项式.一般只要矩阵不特殊都是sI-A初等行列变换变成史密斯标准型,从而通过行列式因子或者直接算出来不变因子组,写成(x-si)^ni形式后,求初等因子组,初等因子组里相同因子方幂最大的

P^(T)AP=B,其中A是对称矩阵,B是对角矩阵.请问当B满足什么条件时,P是正交矩阵.

你是在反向考虑二次型的正交对角化?还是正着来吧.反着来情况复杂呢...A是实对称时,存在正交矩阵P,使P^TAP=对角矩阵B,B的主对角线上元素为A的特征值

矩阵A=400 031 013 求一个可逆矩阵P,使得P^-1AP=∧为对角阵

设此矩阵A的特征值为λ则|A-λE|=4-λ0003-λ1013-λ按第1行展开=(4-λ)*(λ^2-6λ+8)=0解得λ=2,4,4当λ=2时,A-2E=200011011第1行除以2,第3行减去

设矩阵A=[422;242;224],1、求矩阵A的所有特征值与特征向量;2、求正交矩阵P,使得P-1AP为对角矩阵.

|A-λE|=(8-λ)(2-λ)^2A的特征值为2,2,8(A-2E)x=0的正交的基础解系为a1=(1,-1,0)^T,a2=(1,1,-2)^T所以属于特征值2的全部特征值为k1a1+k2a2,

设矩阵A= 求一个可逆矩阵P,使P-1 AP为对角阵,并给出该对角阵

这类题麻烦.|A-λE|=-1-λ-123-5-λ62-22-λc1+c2-2-λ-12-2-λ-5-λ60-22-λr2-r1-2-λ-120-4-λ40-22-λ=(-2-λ)[(-4-λ)(2-

以知矩阵A=[111,111,111],求正交矩阵P和对角矩阵A,使P^-1*AP=A

A是实对称矩阵,可以正交对角化按|A-λE|=0,求得λ=0,0,3求出对应的特征向量:[10-1],[01-1],[111]特征向量已经正交,对其进行标准化[1/√20-1/√2][01/√2-1/