矩阵A的转置乘A=I,A的行列式=1,求证-1是A的特征值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:50:37
A^3=3A^2-3A-A^3+3A^2-3A=0-A^3+3A^2-3A+I=I(I-A)^3=I所以,(I-A)[(I-A)^2]=I,即(I-A)(A^2-2A+I)=I,所以I-A可逆,且逆矩
此题甚易!设A的特征值为λ1,...,λn则det(A+I)=∏(1+λk)这里由于A*A的转制=I知当A的特征值全为1时,答案为2^n;当A的特征值有-1时,答案为0;出现复数根的同样算所以跟A的选
只要根据乘法结合律如图重新画一下括号就容易计算了.经济数学团队帮你解答,请及时采纳.谢谢!再问:嗯嗯
①行变换,列变换是对矩阵而言的,行列式类似的运算只是它的性质,并不叫变换.②行列式是一个数,而矩阵是一个数表,对行列式进行变化一般是为了求值,而矩阵变换一般对应着实际问题③解线性方程组时,只进行行变换
|A|=2*1*1=2A*的特征值为(|A|/λ):2/2=1,2/1=2,2/1=2(A*)^2+I的特征值为(λ^2+1):2,5,5再问:为什么A*的特征值为(|A|/λ)?再答:
|A^-1|=|A|^-1=1/|A|=1/3
数字都不大,可直接用对角线法则,得4*6*2+8*3*1+9*7*5-9*6*1-8*7*2-4*3*5=161
显然t^2+4t+3=0是矩阵A的化零多项式,如果它是次最小化零多项式,则它就是A的最小多项式,此时它的两个根-1和-3均是A的特征值,否则由最小多项式能整除任何化零多项式以及t^2+4t+3=(t+
[A(1,2),A(1,4);A(3,2),A(3,4)]再问:感谢拉真的可以艾~~~可是要抽取很多项的话不是很复杂吗??再答:如果连续,可用冒号,比如第1行的2到4列,可用A(1,2:4).整个第1
这个是最简单的逆矩阵了,在右边加上单位矩阵14102701用矩阵的行变化,使左边变为1001这时右边就是A的逆矩阵,结果是-742-1
因为A^2+2A+3I=0所以A(A+2I)=-3I所以A可逆,且A^-1=(-1/3)(A+2I).
是|2A*-B^-1|?zyc,这个无法计算!|2A*B^-1|=2^n|A|^(n-1)||B|^-1=2^n2^(n-1)(-1/3)=-2^(2n-1)/3.再问:T.T是那本书上写错了!!!!
伴随矩阵A的伴随矩阵可按如下步骤定义:1.把A的每个元素都换成它的代数余子式;(代数余子式定义:在一个n级行列式D中,把元素第i行第j列元素aij(i,j=1,2,.n)所在的行与列划去后,剩下的(n
题目告诉你(A+I)(A-3I)=I即A+I可逆且其逆为A-3I
当然.法一.因为满足条件的矩阵A特征值只能是0,从而I-A特征值全是1,均非零.故I-A可逆.法二.由已知条件A^4=0,故(I-A)(I+A+A^2+A^3)=I-A^4=I,故I-A可逆,且其逆为
A*A-A+I=0所以A*(A-I)=-I所以|A*(A-I)|=|A|*|A-I|=|A|*|I-A|=|-I|0所以|A|,|I-A|都不等于0,所以A和I-A都可逆
因为A-1A=E,所以A=(A-1)-1.因为|A-1|=-14,所以A=(A-1)-1=2321. …(5分)于是矩阵A的特征多项式为f(λ)=.λ−2−3−2λ−1.=λ2-
|2A*|=2^3|A*|=8|A|^(3-1)=8*2^2=32用到2个性质1.|kA|=k^n|A|2.|A*|=|A|^(n-1)
大家都不帮你我来帮你因为AA*=|A|E,两边同时乘A逆,有A*=|A|A逆,两边同时取行列式,有|A*|=||A|A逆|=|A|^(N)|A逆|又因为|A逆|=|A|分之一(这个就不用给你推了吧.A