矩阵|A| |B|和|A B|的区别

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:45:37
设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵

证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#

矩阵AB=0,则矩阵A,矩阵B的关系

显然是错的,如果A,B不是方阵,行列式都不存在如果都是方阵的话也只能说明有一个是缺秩的

证明矩阵A和B对称的充分必要条件是AB=BA

题目不完全,首先应有A和B均为n阶对称矩阵的条件.1、若A、B是对称矩阵,则根据对称矩阵的定义,(AB)T=AB,(T是上标,以下相同),而根据转置矩阵的重要性质,(AB)T=(B)T(A)T,而B、

关于线性代数的逆矩阵已知矩阵A和B,满足AB=2A+B,求矩阵A,其中B=[4 2 3][1 1 0][-1 2 3]

第1步:AB-2A*E=B;第2步:A(B-2E)=B;第3步:A=B*(B-2E)-1;//(B-2E)的-1次方,(B-2E)的逆矩阵;搞定!

设A、B都是n阶非零矩阵,且AB=0,则A和B的秩(  )

若:r(A)=n,则A-1存在,由AB=0,得B=0,矛盾,所以:r(A)<n,同理:r(B)<n,故选择:B.

若矩阵A与矩阵B的积AB是三行四列的矩阵,则矩阵BT

A:3*?列B:*4列BT是4*X列矩阵,X是自然数

A和B是3阶实数矩阵,R(A)=2,B*B*B=0(就是B的立方=0),求R(AB-A)

I=I-B*B*B=(I-B)(I+B+B^2)故I-B可逆,-->B-I可逆,满秩矩阵R(AB-A)=R[A(B-I)]=RA=2

矩阵A的逆矩阵乘以矩阵B和矩阵B乘以矩阵A的逆矩阵 结果相等吗

A^-1B与B^-1A一般不相等矩阵的乘法不满足交换律

证明:若A和B都是n阶对称矩阵,则AB是对称矩阵的充要条件是A与B可交换

经济数学团队为你解答,有不清楚请追问.请及时评价.

已知矩阵B和AB求A的逆矩阵

令AB=CA^(-1)=B*C^(-1)C^(-1)=(1,-1,0;0,1,0;0,0,1)接下来自己算一下吧^_^

为什么矩阵A可逆,则矩阵AB的秩等于矩阵B的秩,同样,矩阵B可逆,则矩阵AB的秩等于矩阵A的秩?

A可逆的充要条件是A可以写成初等阵的乘积所以AB就是B左乘一些初等阵,而左乘初等阵就是对B进行初等行变换,所以秩不变.即r(AB)=r(B)B可逆的充要条件是B可以写成初等阵的乘积所以AB就是A右乘一

这是线性代数的问题,设有矩阵A和B,请证明/AB/=/A//B/

数学归纳法试试.令AB为m*n和m1*n1阶矩阵,分别计算,然后再令他们为(m+1)*(n+1)和(m1+1)*(n1+1)阶矩阵.

分块矩阵问题.矩阵 (O AB O) 的逆矩阵怎么求?A是n阶矩阵 B是s阶矩阵 A B都可逆

第一行乘以矩阵A加到第二行,行列式变成了一个上三角形形|-BI||0-2B逆|,所以原式=|-B|×|-2B逆|=(-1)^n×|B|×(-2)^n×|B逆|=2^n.请采纳.再问:没看懂。答案是(O

矩阵B的秩永远大于等于矩阵AB的秩吗?为什么?A和B都非零

告诉你这几个结论吧,老师说这个记住就好:rank(AB)

a是m*n矩阵,b是n*m矩阵,ab是几阶矩阵?如果是m阶矩阵,为什么?题目中未说明m和n的大小?

是m阶,与m,n大小无关,如果是ba则是n阶!线性代数上就有.

矩阵可逆的定义和推论《线代》上,逆矩阵的定义:对于n阶矩阵A,如果存在矩阵B,使得AB=BA=I,那么A称为可逆矩阵,而

因为在定义的时候并不知道AB=E就意味着BA=E,也就是说矩阵的乘法运算一般不具有交换性,因此AB和BA不一定相等.所以在定义逆矩阵的时候就要求AB和BA都是E才行.只不过后面才证明了如果AB=E,则

当矩阵A,B是可逆矩阵时,用定义验证B-1A-1是AB的逆矩阵.

AA-1=A-1A=EBB-1=B-1B=EB-1A-1AB=B-1(A-1A)B=E再问:没看懂,能解释详细一点儿吗?再答:B-1A-1AB=B-1(A-1A)B=B-1B=E再问:为什么要把B-1