矩阵|A| |B|和|A B|的区别
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:45:37
证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#
显然是错的,如果A,B不是方阵,行列式都不存在如果都是方阵的话也只能说明有一个是缺秩的
AB的秩永远小于等于A的秩和B的秩两者的最小值
题目不完全,首先应有A和B均为n阶对称矩阵的条件.1、若A、B是对称矩阵,则根据对称矩阵的定义,(AB)T=AB,(T是上标,以下相同),而根据转置矩阵的重要性质,(AB)T=(B)T(A)T,而B、
第1步:AB-2A*E=B;第2步:A(B-2E)=B;第3步:A=B*(B-2E)-1;//(B-2E)的-1次方,(B-2E)的逆矩阵;搞定!
若:r(A)=n,则A-1存在,由AB=0,得B=0,矛盾,所以:r(A)<n,同理:r(B)<n,故选择:B.
A:3*?列B:*4列BT是4*X列矩阵,X是自然数
你的条件少了,应当是AB均为n阶非零矩阵
I=I-B*B*B=(I-B)(I+B+B^2)故I-B可逆,-->B-I可逆,满秩矩阵R(AB-A)=R[A(B-I)]=RA=2
A^-1B与B^-1A一般不相等矩阵的乘法不满足交换律
经济数学团队为你解答,有不清楚请追问.请及时评价.
令AB=CA^(-1)=B*C^(-1)C^(-1)=(1,-1,0;0,1,0;0,0,1)接下来自己算一下吧^_^
不可以,当A=3E时候A-3E为零矩阵
A可逆的充要条件是A可以写成初等阵的乘积所以AB就是B左乘一些初等阵,而左乘初等阵就是对B进行初等行变换,所以秩不变.即r(AB)=r(B)B可逆的充要条件是B可以写成初等阵的乘积所以AB就是A右乘一
数学归纳法试试.令AB为m*n和m1*n1阶矩阵,分别计算,然后再令他们为(m+1)*(n+1)和(m1+1)*(n1+1)阶矩阵.
第一行乘以矩阵A加到第二行,行列式变成了一个上三角形形|-BI||0-2B逆|,所以原式=|-B|×|-2B逆|=(-1)^n×|B|×(-2)^n×|B逆|=2^n.请采纳.再问:没看懂。答案是(O
告诉你这几个结论吧,老师说这个记住就好:rank(AB)
是m阶,与m,n大小无关,如果是ba则是n阶!线性代数上就有.
因为在定义的时候并不知道AB=E就意味着BA=E,也就是说矩阵的乘法运算一般不具有交换性,因此AB和BA不一定相等.所以在定义逆矩阵的时候就要求AB和BA都是E才行.只不过后面才证明了如果AB=E,则
AA-1=A-1A=EBB-1=B-1B=EB-1A-1AB=B-1(A-1A)B=E再问:没看懂,能解释详细一点儿吗?再答:B-1A-1AB=B-1(A-1A)B=B-1B=E再问:为什么要把B-1