矩阵乘以单位矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:18:35
正交矩阵.当然,仅仅是指方阵而言.正交矩阵的特点:行列式的绝对值是1,行和列都是与矩阵阶数相同维数的向量空间的标准正交基,作为线性变换不改变长度和内积,等等.
23001000120001002141001032150001r1-2r2,r3-2r2,r4-3r20-1001-200120001000-3410-2100-4150-301r1*(-1),r2
楼上的想法不对吧,你只说明了矩阵A是一个对角矩阵,并且可能是单位阵的倍数,不能说明A是单位阵,要说明单位阵,除了说明:“正交矩阵表明A^(-1)=A',正定矩阵表明A合同于E,即A=C'EC,所以A^
A^-1B与B^-1A一般不相等矩阵的乘法不满足交换律
解题思路:若向量a经过矩阵A变换后所得的向量为b(写成列向量),则b=Aa;本题中的A是单位矩阵,它对应的变换为“恒等变换”(即变换A将任一向量变换为自身).解题过程:解答见附件。最终答案:(2,3)
还记得行列式的代数余子式的概念和性质吧.行列式A的元aij的代数余子式Aij行列式A的第i行(或列)与它对应的代数余子式的积=|A|行列式A的第i行(或列)与其它行(或列)对应的代数余子式的积=0矩阵
是的.前提是乘法有意义
这是正交矩阵的定义.该矩阵每列元素做成向量,都是单位向量,且列向量组之间是正交的,因此列向量组是一个正交单位向理组.同样的,行向量组也是正交单位向量组.矩阵的行列式只能是1或-1.其逆矩阵就是它的转置
不等于,AXB矩阵相乘满足A的行数与B的列数相等,反过来不一定成立,即BXA可能根本无法做乘法
是的,因为AE=AEA=A所以AE=EA可以的话,望选为满意答案.
1、因为已知L矩阵,所以很容易可以求出L的转置矩阵;2、又因为Z的转置和L的转置相乘是单位矩阵,即是说Z的转置和L的转置互为逆矩阵,所以通过初等变换的方法可以求得L转置的逆矩阵,此矩阵便是Z的转置;3
2-r1-r2,r1-2r30310131-10r1-3r2,r3+r200-8013103r1*(-1/8),r2-3r1,r3-3r1001010100r1r3100010001
不一定任何矩阵都可以化为单位矩阵.如果可以化,首先化为行阶梯形,再化为标准型.如果用matlab软件实现,可以用rref指令
A^2=E即A^2-E=0,所以(A+E)(A-E)=0,那么行列式|A+E|或|A-E|=0现在知道A的特征值均大于0,故-1不是A的特征值,即|A+E|不等于0,由秩的不等式可以知道,r(A)+r
E的逆矩阵是它本身
是等于零矩阵补充问题了,那我排最后去了等于零矩阵,是在运算有意义的前提下不同阶无法进行矩阵加减运算
是的n阶单位阵不管左乘还是右乘一个n阶矩阵,都等于该矩阵
把矩阵化成单位矩阵在如下过程中使用:第一种:用行变换或者列变换求矩阵的逆矩阵;第二种:用行合同变换求某些标准型;第三种:就是计算矩阵的等价标准型。针对不同的目的,化简的时候侧重点不同。但是所有的转化都
我十分怀疑你问的是正交矩阵..单位阵转置还是单位阵正交阵转置是它的逆