积分cos根号xdx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 12:43:06
∫√(tanx+1)/cos²xdx=∫√(tanx+1)*sec²xdx=∫√(tanx+1)d(tanx)=∫√(tanx+1)d(tanx+1)=(2/3)(tanx+1)^
原式=∫(0→3)(x+1-1)/(x+1)dx=∫(0→3)dx-∫(0→3)dx/(x+1)=x|(0→3)-∫(0→3)d(x+1)/(x+1)=x|(0→3)-ln|x+1||(0→3)=3-
用换元法
先换元,令√x=u,则x=u²,dx=2udu,u:0→√3∫[0→3]arctan(√x)dx=∫[0→√3]2uarctanudu=∫[0→√3]arctanud(u²)分部积
令√x=t则原式=∫(0→π)sint*2tdt=-2∫(0→π)td(cost)=-2tcost|(0→π)+2∫(0→π)costdt=-2tcost|(0→π)+2sint|(0→π)=2π
∫(0->π)cosxdx=sinx(0->π)=sin(π)-sin(0)=0-0=0
由题意可得:先求∫√(x^2-1)/xdx的不定积分令√(x^2-1)=t,又上下限均大于0所以x=√(t^2+1),dx=t/√(t^2+1)dt所以∫√(x^2-1)/xdx=∫t/√(t^2+1
∫[0,π]cos²xdx=∫[0,π](1+cos2x)/2dx=(x/2+sin2x/4)[0,π]=π/2
如果题目是:∫(1,4)[e^(根号x)/根号x]dx则可以:原式=∫(1,4)[2*e^(根号x)]d(根号x)=2*e^(根号x)|(1,4)=2*e^2-2*e=2e²-2e
∫[0-->+∞]e^(-√x)dx令√x=u,则x=u²,dx=2udu=∫[0-->+∞]2ue^(-u)du=-2∫[0-->+∞]ude^(-u)=-2ue^(-u)+2∫[0-->
答案是三分之二乘以x的二分之三次方+c
令t=√xx=t^2dx=2tdt原式=∫2tcostdt=2tsint-2∫sintdt=2tsint+2cost+C=2√xsin√x+2cos√x+C
再问:能不能设X=3sect如果可以怎么算啊麻烦解答一下谢谢再答:再问:哦谢谢了终于懂了再答:采纳吧,谢谢再问:嗯嗯以后再找你解答再答:嗯,多来高数吧
√x=tx=t²dx=2tdt∫(0-->1)2te^tdt=2∫(0-->1)tde^t=2te^t-2∫e^tdt=2te^t-2e^t(0-->1)=2e-2e-(-2)=2
第一个是tan^3xsecxdx(sec^2x-1)tanxsecxdxsec^2x-1dsecx积分结果是sec^3x/3-x+c第二个同样方法cot^4x/cscxdx(cscx^2-1)^2/c