等比数列an中,Sn表示前n项和,a3=2Sn 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 20:58:45
由Sn=3^(n+1)+r可知公比q=3取n=1得a1=9+r取n=2得a1+a2=4a1=27+r解得a1=6,r=-3
(1)a1an=a2an-1=128,a1+an=66所以a1=2,an=64或a1=64,an=2.又Sn=(a1+anq)/(1-q)=126,代入得q=2或q=1/2.an=a1q^(n-1),
解法1:设数列{an}的公比为q,根据通项公式为an=a1qn-1,由已知条件得a6-a4=a1q3(q2-1)=24,(*)a3a5=(a1q3)2=64.∴a1q3=±8.将a1q3=-8代入(*
设公比为q,当q=-1时,等比数列{an}的各项是a,-a,a,-a,a,-a…的形式,a≠0.又已知Sn是实数等比数列{an}前n项和,故当n为偶数时,Sn=0,当n为奇数时,Sn=a,故选D.
当公比为1时,Sn=n,数列{Sn+12}为数列{n+12}为公差为1的等差数列,不满足题意;当公比不为1时,Sn=1−qn1−q,∴Sn+12=1−qn1−q+12,Sn+1+12=1−qn+11−
证明:当n=1时,a1=S1=21-1=1.当n≥2时,an=Sn-Sn-1=(2n-1)-(2n-1-1)=2n-2n-1=2n-1.又当n=1时,2n-1=21-1=1=a1,∴an=2n-1.∴
设等比数列{a[n]}的公比为q则S[n]=a[1](1-qⁿ)/(1-q)=2(1-qⁿ)/(1-q)则S[n]+1=2(1-qⁿ)/(1-q)+1S[1]+1=
等比数列{an}中,∵a3=2S2+1,a4=2S3+1,∴a4-a3=2S3+1-(2S2+1)=2(S3-S2)=2a3,∴a4=3a3,∴q=a4a3=3.故选:C.
n=1时,a1=1+3a1.即a1=-1/2.n>1时,an=Sn-Sn-1=1+3an-(1+3a(n-1))=3an-3a(n-1),即an=3/2a(n-1),即an=-1/2*(3/2)^(n
等比数列的Sn,S2n-Sn,S3n-S2n也成等比数列.即48,12,S3n-60成等比S3n-60=12^2/48=3s3n=63
q^2*a1=2a1(q+1)+1q^3*a1=3a1(q^2+q+1)+1联立求解即可如果是a4=2S3+1的话即q^3*a1=2a1(q^2+q+1)+1q^2*a1=2a1(q+1)+1q^3-
a3=3S2+1,a3-3S2=1,a4=2S3+1a4-2S3=1a3-3S2=a4-2S3a3=a4-2S3+3S2a3=a4-2S3+2S2+s2a3=a4-2(S3-S2)+s2a3=a4-2
因为a3=a1×q^2=2×s2+1;a4=a1×q^3=2×(s2+a1×q^2)+1;所以a4-a3=a1×(q^3-q^2)=2a1×q^2,由于等比数列不可能有零项,故有q^3-q^2=2q^
由a4-a3=2S3+1-2S2-1=2(S3-S2)=2a3得a4=3a3,所以q=a4/a3=3
S10=a1+a2+.+a10=m;S20=a1+a2+,+a10+a11+a12+...+a20=m+q^10×m=m×(1+q^10);S30=a1+a2+...+a10+a11+a12+...+
Sn=-1/4(an-1)²S(n-1)=-1/4[a(n-1)-1]²相减则Sn-S(n-1)=an=-1/4{(an-1)²-[a(n-1)-1]²}-4a
a1=S1=3+a,a2=s2-s1=9+a-(3+a)=6,a3=S3-S2=27+a-(9+a)=18,因为a1·a3=a2²,即18(3+a)=36,解得a=-1再问:求通项公式再答:
S3-S2=(a1+a2+a3)-(a1+a2)=a3所以2(S3-S2)=2a3
已知Sn=2An-1取n=1得:S1=2A1-1又因为S1=A1,解上述方程可得:A1=1Sn=2An-1S(n-1)=2A(n-1)-1注:"n-1"为下标上下两式相减得:Sn-S(n-1)=2An
(1)令n=1,得a1=-1.Sn=2an+n,S(n+1)=2a(n+1)+n+1.两式相减,得a(n+1)=2a(n+1)-2an+1.整理得a(n+1)-1=2(an-1),a1-1=-2.综上