等腰Rt△ABC的直角顶点C(14,-1),斜边AB所在的直线方程为3x-y=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:30:35
显然⊿ADE≌⊿ADE,得∠ADE=∠ABC.又∠MAD=∠HAC=∠ABC,所以∠MDA=∠MAD,得MD=MA.同理可得ME=MA所以:MD=ME,即:M是DE中点.
(1)①猜想:AE2+CF2=EF2.②成立.证明:连结OB.∵AB=BC,∠ABC=90°,O点为AC的中点,∴OB=12AC=OC,∠BOC=90°,∠ABO=∠BCO=45°.∵∠EOF=90°
AE,EF,FB,能大于EF不能
根号2的2n-1次幂
2乘以根号2的n倍
图我没给你画,你看我写的自己画一下吧,实在是很难弄到网上,而且你这题太复杂啦,我就做了一道题啊,第一题:延长DB到F使BF=ABBC垂直于EFDA垂直于EFso,BC平行于AD又BF=ABAN=CFs
因为∠A=35°,所以∠B=90-35=55度.因为BC=B'C,所以∠CB'B=∠CBB'=55度,∠B'CB=180-55-55=70度.那么∠DCB=90-70=20度,∠ABC=55度.所以∠
AD⊥BC,AD=BC∵∠AOD=∠BOC=90º+aºAO=BO,DO=CO∴⊿AOD≌⊿BOC∴AD=BC,∠OAD=∠OBC设AD分别交BO,BC于点E,F.则∠AEO=∠B
EP=FQ,理由如下:∵Rt△ABE是等腰三角形,∴EA=BA,∵∠PEA+∠PAE=90°,∠PAE+∠BAG=90°,∴∠PEA=∠BAG,在△EAP与△ABG中,∠EPA=∠AGB=90°∠PE
(1)△OFC是能成为等腰直角三角形,①当F为BC的中点时,∵O点为AC的中点,∴OF∥AB,∴CF=OF=12AB=52,∵AB=BC=5,∴BF=52,②当B与F重合时,∵OF=OC=522,∴B
(1)BE与CF的数量关系:BE=2CF.BE与CF的位置关系:BE⊥CF.(2)旋转一个锐角后,(1)中的关系依然成立.证明:延长CF到M,使FM=FC,连接AM,DM.又AF=DF,则四边形AMD
每个新等腰直角三角形,斜边为直角边的根号2倍,第5个为,根号2的5次方,所以答案为:4倍根号2.
(1)答案不唯一,如△MGD≌△MND;证明:∵△DCN绕点D顺时方向旋转180°得到△DBG,∴△DCN≌△DBG,G、D、N三点共线,∴DN=DG,在△MGD和△MND中,MD=MD,∠MDG=∠
(1)①猜想:AE2+CF2=EF2.②成立.证明:连结OB.∵AB=BC,∠ABC=90°,O点为AC的中点,∴OB=12,∠BOC=90°,∠ABO=∠BCO=45°.∵∠EOF=90°,∴∠EO
这道题已知条件有问题:在Rt△ABC中,AB=AC=5,∠B=90°,∠B是直角,那AC是斜边,AB是直角边,斜边不可能等于直角边.
:(1)△OFC是能成为等腰直角三角形,①当F为BC的中点时,∵O点为AC的中点,:(1)△OFC是能成为等腰直角三角形,①当F为BC的中点时,∵O点为AC的中点,∴OF∥AB,∴CF=OF=52,∵
过P点分别做ac,bc垂线pf,pgP为AB中点,所以pf=pg角dpe=角fpg=90度所以角fpd=角gpe,pf=pg,角pfd=角pge=90度所以pdf与peg全等所以pd=pe
(1)三角对应相等,两三角形∽,又ab=bc,所以两三角形全等.(2)梯形面积公式=(上底+下底)乘以高除以2面积=(4+2)*(4+2)/2=18
设A(a,3a),过点A作AD⊥x轴于点D,∵△ABC是等腰直角三角形,∴OD=a,AD=BD=CD=3a,OC=a+3a,OB=3a-a,∴OC2-OB2=(a+3a)2-(3a-a)2=12.故答
∵△ABC是边长为1的等腰直角三角形,∴S△ABC=12×1×1=12=21-2;AC=12+12=2,AD=(2)2+(2)2=2…,∴S△ACD=12×2×2=1=22-2;S△ADE=12×2×