等边三角形ABC,AD=BE=CF=三分之一AB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:50:31
如图,已知△ABC和△DEC均为等边三角形 试说明AD=BE

△ACD和△BCE中AC=BC,CD=CE,角ACD=角BCE=60°+角ACE所以△ACD≌△BCE,从而AD=BE

如图,已知△ABC和△DEC都是等边三角形.求证:AD=BE

证明:∵△ABC和△DEC是等边三角形∴∠ACB=∠BCE=60°AB=BC,CD=CE∴△ACD≌△BCE∴AD=BE

如图,已知△ABC,△CDE都是等边三角形,连接BE、AD,求证:AD=BE

证明:在等边三角形中∠ACB=∠DCE=60,∴∠ACB+∠ACE=∠DCE+∠ACE即∠BCE=∠ACD在△BCE和△ACD中,BC=AC∠BCE=∠ACDCE=CD∴△BCE≌△ACD(SAS)∴

如图△ABC、△CDE都为等边三角形,求证:AD=BE.

证明:∵△ABC、△CDE都为等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,∵在△BCE和△ACD中,BC=AC∠B

如图:△ABC和△CDE是等边三角形.求证:BE=AD.

证明:∵△ABC、△ECD都是等边三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=60°,在△BCE和△ACD中,BC=AC∠ECD=∠ACBEC=DC,∴△BCE≌△ACD(SAS),∴AD=

如图,△ABC和△CDE是等边三角形.求证BE=AD

因为△ABC和△CDE都是等边三角形所以AC=BC;CD=CE角ACB=角DCE=60度有角ACD=角BCE△ACD和△BCE全等(两边与之一夹角都相等的三角形全等)故AD=BE

已知△ABC与△CDE是等边三角形 求证AD=BE OC平分∠BOD

∵∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠ACD=∠BCE,又∵AC=BC,DC=EC,∴△ACD≌△BCE,∴AD=BE;作CP⊥AD于P,CQ⊥BE于Q,∵△AC

已知:如图,等边三角形DEF的顶点分别在等边三角形ABC的边上.求证:AD=BE=CF

不妨设D,E,F分别在边AB,BC,AC上.∵△ABC,△DEF为正三角形,∴∠A=∠B=∠C=60∠EDF=∠FED=∠EFD=60∠,DE=DF=EF∴∠BDE+∠ADF=180-60=120∠A

数学题几何证明题三角形DEF为等边三角形,AD=BE=CF求证三角形ABC为等边三角形

应该是这个图吧   设△ABC为等腰三角形设AB=AC则∠B=∠C   AB-BD=AC-AF即AD=CF又AF=CE,DF=EF∴△DAF

如图,△ABC是等边三角形,AE=CD,BQ垂直AD于Q,BE交AD于P

1、三角形abc是直角三角形,所以AB=AC,∠BAC=∠ACB=60°,∵AE=DC,∴△ABE全等与△ADC,∴∠DAC=∠ABE,∴∠ABE+∠BAE=60°∴∠BPQ=60°,则∠PBQ=30

如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.

∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°.又∵AE=CD,∴△ABE≌△ACD,∴∠ABE=∠DAC.又∵∠BPQ=∠ABE+∠BAD,∴∠BPQ=∠DAE+∠BAD=60°,∴在

如图所示,已知:△ABC和△CDE都是等边三角形,求证:AD=BE.

证明:∵∠ACB=∠DCE,∠ACD+∠BCD=∠ACB,∠BCE+∠BCD=∠DCE,∴∠ACD=∠BCE,在△ACD和△BCE中,AC=BC∠ACD=∠BCEDC=CE,∴△ACD≌△BCE(SA

如图,△ABC和△ECD都是等边三角形,求证:AD=BE.

证明:∵△ABC、△ECD都是等边三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=60°,在△BCE和△ACD中,AC=BC∠ACB=∠ECD=60°EC=DC,∴△BCE≌△ACD(SAS),

如图,已知等边三角形ABC中,BD=CE,AD与BE相交于点P

1、∵三角形ABC是等边三角形∴AB=BC,∠ABC=∠C=60°∵BD=CE∴△ABD≌△BCE∴∠ABD=∠CBE在三角形APE中,∠AEP=∠C+∠CBE=60°+∠CBE,∠PAE=∠BAC-

已知等边三角形ABC中,BD=CE,AD与BE相交与点P

因为AB=BC,BD=CE,角ABC=角ACB=60°,所以三角形ABD全等于三角形BCE,所以角CBE=角BAD,因为角CBE+角ABE=角ABC=60°所以角BAD+角ABE=60,因为角APE=

已知AD=BE=CF,三角形DEF为等边三角形,证明三角形ABC为等边三角形.

先送上2B不妨设AD=BF=EC=0,于是……LZ不妨把图片忘掉,根据已知条件自己再画一个图,你会发现可以画出不止一种情况,因此用初中生那套正面证明是行不通的.反证法:1.首先假设ABC是等腰三角形,

△ABC是等边三角形,且AD=BE=CF,那么△DEF是等边三角形吗?

1、因为AB=BC=AC,且AD=BE=CF,所以AB-AD=BC-BE=AC-CF即BD=CE=AF2、因为角A=角B=角C,又AD=BE=CF,同是第1步已证明BD=CE=AF;以上三点可证明三角