等边三角形abc中当点d在bc的延长线上,点 e在ca的延长线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:46:14
由题意角C=60°,AC>BC不可能三角形CAB是等边三角形
∵△ABC和△ADE为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,∵在△ABD和△ACE中,AB=AC∠BAD=∠CAEAD=AE,∴△ABD≌△ACE(S
解题思路:(1)根据等边三角形的性质证明△ABE≌△CAD就可以得出结论;(2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出结论.解题过程:如图,已知△ABC为等边三角形,点D
证明:∵△ABC是等边三角形∴∠A=∠B=60°,AB=AC=BC∵AF=BD=CE∴AE=BF∴△AEF≌△BFD∴EF=FD同理可得ED=FD∴△EDF是等边三角形
因为没法画图,根据我的思路写一下吧:∠DCB=60度-∠ACD,∠ECA=60度-∠ACD,所以∠DCB=∠ECA,又因为两个三角形都是等边三角形,所以:BC=AC,DC=EC可证得:△DCB≌△EC
(1)证明:∵⊿ABC和⊿ADE是等边三角形∴∠BAD+∠DAC=∠DAC+∠CAE=60°∴∠BAD=∠CAE又∵AB=AC,AD=AE∴⊿BAD≌⊿CAE∴∠ACE=∠ABC=60°又∵∠ACB=
1:7连接FB因为AF=AC,所以S△FAB=S△ABC(等底同高);又因为BD=BA,所以S△FAB=S△FBD(等底同高),所以S△AFD=2S△ABC.而△AFB全等△BDE全等△CEF(易得)
没有图,没有问题,快补充完整吧△ABC与△DCE都是等边三角形,点D在BC上用全等三角形解OVER
1.证三角形ABD与三角形CAE全等,用边角边.AB=AC,BD=AE,60度角2.全等之后,角BAD=角ACE所以,角DAC=角ECB又角DFC=角DAC+角ACE,所以,角DFC=角ECB+角AC
60度三角形ADC全等于BEA角DAC=角ABE角BFD=角BAD+角ABE=角BAD+角DAC=60度
证明:CE平分∠ACD,∴∠1=∠2=60°,在△ABD和△ACE中,AB=AC,∠B=∠1,BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∠BAC=60°,∴∠DA
120度AD=AC=ABACD=ABC=ADB=ADC=60BDC=ADB+ADC=120
三角形ABC等边,于是AB=BC,∠ABD=∠BCE=60°,又BD=CE,所以△ABD≌△BCE(SAS),∠BAD=∠CBE,所以∠BPD=∠ABE+∠BAD=∠ABE+∠CBE=∠ABC=60°
AB=BCBD=CE
∵DE//BC.∴∠ADE=∠B=60°∠AED=∠C=60°所以:△ADE是等边三角形.
连结DE则ΔEDC为直角三角形且∠EDC=30º再证ΔABD≌ΔBEC从而得到∠AEP=∠ADC,∠APC=∠C=60º所以PDEC四点共圆(∵∠DPE=∠PBD+∠BDP=∠DA
-A△CB|BD|=1/3|BC||BD|/|BC|=1/3|BD|=1;|BC|=3(CE/CA也是同样的道理)|AD|=|BC|+|CA|+1/3|BC|=4/3|BC|+|CA||BE|=1/3
面积相等1/2*PF*AB+1/2*PD*BC+1/2*PE*AC=1/2*BC*AM等边,AM=PD+PE+PF