lim ln(1 t)dt在0到x上积分 x²
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:13:28
不太看得懂你的问题,你应该想问积分上限函数吧(变限积分)?运用原函数存在定理即可,d/dt∫[x^2→0](sint/t^2)+1dt=[d/dt∫[u→0](sint/t^2)+1dt]*(x^2)
答案如图.
设s=根号(3t+1)s^2=3t+12sds=3dt∫(t/根号(3t+1))dt=2/9∫(s^2-1)ds=2/9(1/3y^3-y)……(y=根号(3x+1)在区间[1,2]上)f'=0,y=
∫[0,4]1/√x*f(√x)dx=2∫[0,4]f(√x)d√x=2*x/2[0,4]=4
变上限积分你知道吗,先了解一下这个公式再问:老大有点没东就是你求导的时侯,第二步没好懂,你看它左边积分相当于右边是原函数,但是求导后怎么后面没变呢,老大我数学比较差,不好意思哈。谢谢再答:不好意思,右
F(X+T)-F(X)=INT[xtox+T]f(t)dtx=-T/2INT[xtox+T]f(t)dt=INT[-T/2toT/2]f(t)dt
再问:最后一步能再详细点吗
/>您的采纳是我前进的动力~
f(x)=∫0到1|x-t|dt=∫0到x|x-t|dt+∫x到1|x-t|dt=∫0到x(t-x)dt+∫x到1(x-t)dt=0.5x^2-x^2+1-x^2-0.5+0.5x^2=0,5-x^2
解析:原式=∫(0,x)xf(t)dt-∫(0,x)tf(t)dt=1-cosx即:x∫(0,x)f(t)dt-∫(0,x)tf(t)dt=1-cosx.两端对x求导,得∫(0,x)f(t)dt+xf
这个形式的定积分是不可以求的但是∫(0,sinx)√(1+t^2)dt这个式子的导数是可以求的原题是不是求d[∫(0,sinx)√(1+t^2)dt]/dx呢?再问:���ǵ�再答:��������ɣ
利用洛必达法则.即当分子和分母都趋于无穷小时,同时对分子和分母求导数原式=lim(X趋向于0)[2*∫(0到x)e^(t^2)*dt*e^(x^2)]/[x*e^(2*x^2)]=2*lim(X趋向于
192^(1/3)再问:......过程,谢谢......而且答案貌似是36^(1/3)再答:对于积分,t^2dt积分后为(t^3)/3,上限为f(x),下线为0.代入积分表达式得(f(x))^3除以
原式=lim(x->0){[∫(sinx,0)cos(t²)dt]/x}=lim(x->0)[-cosx*cos(sinx)²](0/0型极限,应用罗比达法则)=(-1)*1=-1
答:(0→x)∫tf(t)dt求导得:[(0→x)∫tf(t)dt]'=xf(x)把tf(t)看成g(t)就可以了再问:f(t)dt导数是f(t),那就是t乘f(t)dt导数是t乘f(t)?这么简单?
令u=x-t0≤t≤xt=x-u则∫0到xtf(x-t)dt=∫x到0(x-u)f(u)d(x-u)=∫x到0(u-x)f(u)du=∫0到x(x-u)f(u)du与积分变量无关,所以∫0到xtf(x
不用计算可知∫sin(t^2)dt(0到1)是一个常数对常数求导结果为0
这个题目似乎有点问题举个反例令f(x)=x+1[a,b]=[1,2]显然f(x)在[a,b]上连续且恒大于0F(x)=x^2/2+x-1+ln(x+1)F'(x)=x+1+1/(x+1)>0F(a)=