lim n*an=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:57:21
设常数a>0,(ax2+1x) 4展开式中x3的系数为32,则limn→∞(a+a2+…+an)=(  )

(ax2+1x)4展开式的通项为Tr+1=a4−rCr4x8−5r2令8−52r=3得r=2展开式中x3的系数为a2C24=32解得a=12∴limn→∞(a+a2+…+an)=limn→∞12(1−

设数列Xn有界,limYn=o ,limn趋向于正无穷.证明limXn.Yn=0

{Xn}有界,说明存在N,使得│Xn│≤NlimXn×Yn≤lim(N×Yn)=N*limYn因为limYn=0所以N*limYn=0,即limXn×Yn=0

高数 极限证明limn-无穷大an=a,证明limn-无穷大|an|=|a|.

根据极限的定义证明limn-无穷大an=a,即存在N,当n>N时,对任意的正数e都有,|an-a|

用夹逼定理证明limn!/2^n=0

很明显,他的极限不是零啊,是不是lim2^n/n!=0啊?证明:2^n/n!>0/n!=0;2^n/n!=2*2*2*……2/n!

limn→∞(1+1/n)^n=e

这个问题很难的数学专业也一般不会考这个证明的啊这是个很重要的结论个人认为一般记住结论就可当然也要活用本人就是学数学专业的不过一般的数学分析书上对这个问题都做了一定的证明不过想看明白不是一件简单的事情~

用极限定义证明:limn→正无穷(根号下n+1-根号下n)=0

对任给的ε>0(ε1/(2ε)^2,于是,取N=[1/(2ε)^2]+1,则当n>N时,有    |√(n+1)-√n|根据极限的定义,成立    lim(n→inf.)[√(n+1)-√n]=0.

已知{an}是等比数列,如果a1+a2+a3=18,a2+a3+a4=-9,Sn=a1+a2+…+an,那么limn→∞

∵a1+a1q+a1q2=18,a1q+a1q2+a1q3=-9,∴a1=24,q=−12.∴Sn=24(1−(−12)n)1+12,∴limn→∞Sn=241+12=16.故选B.

已知数列{an}是无穷等比数列,其前n项和是Sn,若a2+a3=2,a3+a4=1,则limn→∞Sn的值为(  )

∵a2+a3=2,a3+a4=1∴a1q+a1q2=2①a1q2+a1q3=1②①②联立可得,q=12a1=83∴Sn=83×[1− (12n)]1−12=163[1−(12) n

已知limn→∞an2+cnbn2+c=2,limn→∞bn+ccn+a=3,则limn→∞an2+bn+ccn2+an

∵limn→∞an2+cnbn2+c=2,limn→∞bn+ccn+a=3,∴ab=2,bc=3,∴ac=2×3=6. ∴limn→∞an2+bn+ccn2+an+b=limn→∞a&nbs

极限与等比数列的题无穷等比数列 {an}中 a1=2 且Limn到+∞(a1+a3+...+a2n-1)=8/3 则公比

a1=2an=2*q^(n-1)a1+a3+...+a2n-1=2+2*q^2+2*q^4+...+2*q^(2n-2)=2(1-q^(2n+1))/(1-q^2)求极限,n到+∞需要q

问一道数学题 设数列xn有界,又limn yn=0,证明 lim xnyn=0 并利用此结论求极限

如果你认可我的回答,请及时点击右下角的【采纳为满意回答】按钮我是百度知道专家,你有问题也可以在这里向我提问:http://zhidao.baidu.com/prof/view/yq_whut

数列{an}的前n项和记为Sn,已知an=5Sn-3(n∈N)求limn→∞

由Sn=a1+a2++an知an=Sn-Sn-1(n≥2),a1=S1,由已知an=5Sn-3得an-1=5Sn-1-3.于是an-an-1=5(Sn-Sn-1)=5an,所以an=-14an-1.由

设x1=a>0,x2=b>0,xn+2=根号下(xn+1)(xn) 求limn→∞ xn 其

结果是把Xn求出来是再问:不知道怎么求xn,求指教再答:接下来等比数列,不用我算了吧~~~再问:Thankyou

设常数a>0,(ax-1x)5展开式中x3的系数为-581,则a= ___ ,limn→∞(a+a2+…+an)= __

(1)由Tr+1=c5r(ax)5-r(-1x)r,整理得Tr+1=(-1)rc5ra5-rx5-2r,r=1时,即(-1)c51a4=-581,∴a=13.故答案为13(2)方法1:令sn=a+a2

在无穷等比数列{an}中,limn→∞(a

因为无穷等比数列{an}中,limn→∞(a1+a2+…+an)=12,所以|q|<1,a11−q=12,所以a1=12(1−q),∵-1<q<1且q≠0∴0<a1<1且a1≠12故答案为:(0,12

已知等比数列{an}的公比q>1,a1=b(b≠0),则limn→∞a

因为已知等比数列{an}的公比q>1,a1=b(b≠0),则:an=b•qn-1  Sn=b(1−qn)1−q  a6=b•q5所以a6+a7+a8+…+an=