lim(2-x)^tan(πx 2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:44:14
lim(tan^3(3x)/(X^2sin(2x))(x趋近于0)

lim(tan^3(3x)/(X^2sin(2x))=(27/2)*lim{[tan^3(3x)/(3x)^3]*[2X/sin(2x)]}=27/2或用洛彼得法则

利用简单方法求极限.x趋近于1,lim(1-x)tan*π/2*x

此题最简单的求解方法是“罗布达法则”法!解法如下.∵lim(x->1)[(1-x)/cos(πx/2)]=lim(x->1){(-1)/[(-π/2)sin(πx/2)]}(0/0型极限,应用罗比达法

高数极限习题求lim(x->1)(1-X)tan(πx/2)的极限

令1-x=u,原式化为:lim{u->0}utan[π(1-u)/2]=lim{u->0}ucot(πu/2)=lim{u->0}ucos(πu/2)/sin(πu/2)=lim{u->0}cos(π

当x趋向1时,求极限lim(1-x)tan(πx/2),求详细过程~

原式=lim(1-x)sin(πx/2)/cos(πx/2)是0/0型,用洛必达法则=lim[-sin(πx/2)+(1-x)πcos(πx/2)/2]/[-πsin(πx/2)/2]=1/(π/2)

几道求极限的高数题,lim1/x(tanπx/(2x+1)) x→∞lim x(x^x-1)x→0+lim(x^x^x-

lim1/x(tanπx/(2x+1))=lim(1/x)*tan[π/2-π/(4x+2)]=lim1/xtanπ/(4x+2)=lim(4x+2)/πx=4/π2.lim(xlnx)=0(x→0)

一道高数极限题.x从左侧趋近于1,求lim(1-x)^(tanπx/2)

L=lim(x->1-)(1-x)^tan(πx/2)lnL=lim(x->1-)ln(1-x)/tan(πx/2)(∞/∞)=lim(x->1-)[-1/(1-x)]/[(π/2)[sec(πx/2

求lim(x->1)(1-X)tan(πx/2)的极限

lim(x->1)(1-x)tan(πx/2)=lim(y->0)[y*tan(π/2-πy/2)](用y=1-x代换)=lim(y->0)[y*ctan(πy/2)]=lim(y->0)[y*cos

求x→1时lim(2-x)^tan(πx)/2的极限

这个是1^oo型的,运用重要的极限准则解题即可,具体如下:x→1时lim(2-x)^tan(πx)/2=x→1时lim[1+(1-x)]^1/(1-x)*(1-x)*tan(πx)/2=x→1时e^l

高数两个重要极限求助lim(1-X)tanπx/2,x---1

lim(1-X)tanπx/2=lim[(1-x)/cosπx/2]sinπx/2=lim[(1-x)/sinπ(1-x)/2]sinπx/2利用重要极限=limsinπx/2=1

当x趋向1时,求极限lim(1-x)tan(πx/2),..

注意lim(x->0)sinx/x=lim(x->0)x/sinx=1

几道极限题!1,lim(x->1)(1-x)tanπ/22,lim(x->0)(tanx-sinx)/x^3

1,lim(x->1)(1-x)tanπ/2lim12x/12*1tbanπ*1/3x2,lim(x->0)(tanx-sinx)/x^3lim20x2xtansixn/30x

lim x→-2 (tanπx)/(x+2) 2.lim x→0 cot2xcot[(π/2)-x] 3.lim x→π

1.洛比达法则π/cos^2πx=π2.=tanx/tan2x=x/2x=1/23.洛比达法则2sinx/-3=-根号3/3欢迎追问!再问:谢谢你~可是我还没学洛比达法则,能不能不用这个来解题再答:洛

lim (sec x - tan x) limit是x->(pi /2 )-

学过求导没有,用洛必达法则可以解因为分子和分母在x趋近于pi/2-的时候都趋近于零分别对分子分母求导,得出分子等于-cos,分母等于-sin那么就是说这个极限等价于lim(ctg(x))x->pi/2

求lim(x->1)[(3x-3)tan((π/2)x]

lim(x->1)[(3x-3)tan((π/2)x]=lim(x->1)[(3x-3)/cot((π/2)x]分子分母求导数3/[-1/sin²((π/2)x)*(π/2)]=-3/[(π

求lim(x趋近于π)(π-x)tan(x/2)的极限?

π-x趋近于0;tan(x/2)趋近于∞;lim(x趋近于π)(π-x)tan(x/2)=lim(x趋近于π)(π-x)/(cos(x/2)/sin(x/2))=(分子分母同时求导)lim(x趋近于π

利用变量替换y=x-1求极限lim(x-1)tan(πx/2) x-->1

∵当x->1时,y->0∴lim(x->1)[(x-1)tan(πx/2)]=lim(y->0)[y*tan(π/2+πy/2)]=lim(y->0)[-y*ctan(πy/2)]=(-2/π)lim

lim (x→0) [tan( π/4 - x )]^(cotx)=?

lim(x→0)[tan(π/4-x)]^(cotx)=lim(x→0){e^[cotx*ln(tan(π/4-x))]}只需要求lim(x→0)[cotx*ln(tan(π/4-x))];lim(x

lim (x→0) [(2x) / (1+x^2)]/sec x tan x+si

就化简一下就可以了lim(x→0)[(2x)/(1+x^2)]/(secxtanx+sinx)=lim(x→0)[(2x)/(1+x^2)]/(sinx/cosx^2+sinx)=lim(x→0)2/

lim tan x - sin x / x³ lim eˆ2x - 1 / x

原式=lim(x->0)sinx(secx-1)/x^3=lim(x->0)(secx-1)/x^2=lim(x->0)(1-cosx)/x^2cosx=lim(x->0)2sin^2(x/2)/x^

lim x趋于0 (ln(1+x)-x)/(tan^2 x)

要用到等价代换的tanx等价于xlimx趋于0(ln(1+x)-x)/(tan^2x)=(ln(1+x)-x)/x^2这步是分母等价代换=(1/(1+x)-1)/2x这步是用洛比达法则分子分母分别求导