级数(-1)a^nn n^n (n 1)收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 23:49:34
n≥1.当01,u=1/a^(lnn)=1/[e^(lnn)]^p=1/n^p,则级数收敛.
楼主的做法是:1/n(n+1)=1/n-1/(n+1)
只要用导数证明存在一个M,使得x>M时,y=x^(1/x)-1单调递减就行了,那么存在一个N,使得n>N时,an单调递减数列,即存在一个N,使得n>N时,lim[a(n+1)/an]e时,y'=g'N
俺来回答一下,马上拍照再答:
a1=1=1×10^0a2=11=1×(10^0+10^1)a3=111=1×(10^0+10^1+10^2).…………an=1×[10^0+10^1+10^2+...+10^(n-1)]=(10^n
如图所示
这道题不用分类讨论,无论a取何值都是收敛的,因为这个表达式只是数列通项,不是部分和数列的表达式,楼主可能这里犯错了.
a^n/(1+a^2n)=1/[(1/a^n)+a^n]当a=1时,通项极限=1/2所以发散当a>1时,a^n/(1+a^2n)=1/[(1/a^n)+a^n]
1.limn^(a+1)/(n^a(2n-1))=1/2因为:级数1/n^(a+1)收敛,原级数收敛2.1/(an+b)>1/(an)原级数发散再问:b>0,1/(an+b)<1/(an)吧,大的级数
级数的通项(n+1)/n^2>n/n^2=1/n,以1/n为通项的级数是发散的,所以根据比较判别法原级数是发散的.
设f(x)=1/|a|^√x,求下限1,上限+∝的反常积分,分成|a|1讨论下,|a|1时利用洛必达法则,能够得到反常积分收敛,而√n全包含于√x,所以原级数在|a|>1时收敛,|a|≤1时发散,过程
a^n/(1+a^n)=1/(1+(1/a)^n)所以当|a|
用反证法证明假设∑[a(n)+b(n)]收敛lim∑b(n)=lim(∑a(n)+∑b(n))-lim(∑a(n))显然lim∑b(n)存在,这样就得到矛盾.
http://www.math.org.cn/forum.php?mod=viewthread&tid=28241&extra=
例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+
用傅里叶级数展开.得到答案pi^4/90见参考资料