级数1 2的n次方的和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:45:35
根据莱布尼兹判别法,要证两点:1、通项n充分大以后,un单调递减2、n趋于无穷时,un极限为0下面先证1.un>u(n+1).(1)lnn/n>ln(n+1)/(n+1)(n+1)lnn>nln(n+
1+n分之1和的n次方的极限是e,所以级数的通项的极限非零,级数发散再问:1+n分之1和的n次方的极限是e就是问这个是怎么来的。再答:重要极限呐
用拉阿伯判别法,证明n(a[n+1]/a[n]-1)<-1,从而级数收敛
找收敛域,让后除以前一项,看看就可以
doubley=k=s=t=1;这个分开来写:doubley=1,k=1,s=1,t=1;
@满足不等式@>3/2因为根号下(2n+1)/根号下n的极限是根号2,也就是说他们是同阶的,原级数收敛等效于级数1/n^(@-1/2)收敛因为级数1/n^p当p>1时收敛,所以有@>3/2
发散啊,不满足级数收敛的必要条件.
用后一项比前一项.(n/(n+1))^n---->1/e故收敛.
∑(-1)∧n这个级数是不收敛的,+1-1震荡显然不收敛再问:可是部分和有界啊,部分和要么是-1要么是1要么是0。。再答:这不叫有界啊再答:我刚看了一下,部分和有界判断的是正项级数,这是交错级数,不能
收敛.1到n的平方和是1/6*(n+1)*(2n+1),用整个数列的后一项比上前一项,得到1/3,因为绝对值小于1,所以收敛
R=a(n-1)/an=n/(n-1)=1;当x=-1时,是交错级数,极限->0x=1是时,是调和级数,不收敛所以[-1,1)是收敛域
因为lim(n->∞)[1/(2^n+n)]/(1/2^n)=1而Σ1/2^n收敛所以原级数收敛.
e^x=∑x^n/n!所以x=2就是你要求的式子
当n≥10时,1/n^n≤1/10^n,而级数∑1/10^n收敛,所以级数∑1/n^n收敛再问:为什么令n≥10?再答:这个没什么特别原因,令n≥2或3都可以,只要保证后一个级数收敛就行。
记通项是an,当x不为0时,显然|a(n+1)/an|=|(n+1)x/3|,只要n+1>3/|x|,则有|a(n+1)/an|>1,|an|递增趋于无穷,级数发散.因此原级数只在x=0收敛.
如果可以使用结论∑{1≤n}1/n^2=π^2/6,那么求这个和不难:∑{1≤n}(-1)^(n-1)/n^2=∑{1≤k}1/(2k-1)^2-∑{1≤k}1/(2k)^2(对n分奇偶,n=2k-1
比值判别法,后项与前项的比值=e/(1+1/n)^n>1,因此发散.再问:比值等于1啊再答:是比值,不是极限。对任意正整数n,(1+1/n)^n
a[n+1]/a[n]={1/2^[(n+1)/2]}/[1/2^(n/2)]=1/2^(1/2)
(-1)^n/(2n+1)=(-1)^n*(1)^(2n+1)/(2n+1)令S(x)=∑(-1)^n*x^(2n+1)/(2n+1)S'(x)=(∑(-1)^n*x^(2n+1)/(2n+1))'=