Ln(2X 1)积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:10:01
我是这样做的,还不知道是不是最后的结果,你看一下,我是用含参量积分来做的:令I=积分:(0,pai)ln(cosx+2)dxI(a)=积分:(0,pai)ln(acosx+2)dxI'(a)=积分:(
1,xln(1+x^2)-∫2x^2/(1+x^2)dx=xln(1+x^2)-2∫(1-1/(1+x^2))dx=xln(1+x^2)-2(x-arctanx)2,设t=√x,x=t^2,dx=2t
∫(-2→2)x*ln(1+e^x)dx=∫(-2→0)x*ln(1+e^x)dx+∫(0→2)x*ln(1+e^x)dx∫(-2→0)x*ln(1+e^x)dx设y=-x,x=-y原式=∫(2→0)
首先你给的等式是不对的,等式左边应该有个极限符号,当n趋向于无穷大的时候,你的等式才成立.然后再看等式,你可以将等式反过来看,从定积分的几何意义出发,该定积分的几何意义是以y=ln(1+x)为曲边、y
∫tan(x)dx=∫sin(x)/cos(x)dx=-∫1/cos(x)d(cosx)=-ln|cosx||(0,1/4π)=ln1-ln√2/2=-ln√2/2∫(cos(x)ln(x)-sin(
原式=xln(1+x)-∫xd[ln(1+x)]dx=xln(1+x)-∫2[x/(1+x)]dx=xln(1+x)-2∫[1-1/(1+x)]dx=xln(1+x)-2x+2arctanx+C
先用对数函数的性质把原式变为:=∫ln(1+x)dx-2∫ln(2-x)dx而lnx的积分为ln(x)*x-x+C这样上面的不定积分就可以求解了吧具体的步骤我就不写了晕,怎么不写清楚?利用分部积分法.
∫ln(x+√(1+x^2))dx=xln(x+√(1+x^2)-∫xd(ln(x+√(1+x^2))[ln(x+√1+x^2)]'=[1+x/√(1+x^2)]/(x+√(1+x^2))=1/√(1
题目条件不完整,此题无解
∫ln[x+(1+x^2)^(1/2)]dx=xln[x+(1+x^2)^(1/2)]-∫[x(1+x/(1+x^2)^(1/2)]/[x+(1+x^2)^(1/2)]dx=xln[x+(1+x^2)
∫ln(x^2+1)dx=ln(x^2+1)x-∫xd(ln(x^2+1))=ln(x^2+1)x-∫x*2x/(x^2+1)dx=ln(x^2+1)x-∫2-2/(x^2+1)dx=ln(x^2+1
∫ln^2x/xdx=∫ln^2xd(lnx)=1/3ln^3x+C
运用分部积分法,如下2张图:
原式=∫ln(x+x^3)dx=xln(x+x^3)-∫xdln(x+x^3)=xln(x+x^3)-∫x*1/(x+x^3)*(1+3x^2)dx=xln(x+x^3)-∫(1+3x^2)/(1+x
1.f’(x)=2x+a/(1+x)=0,2x^2+2x+a=0有不等的实根,4-8a>0,a
这个题我以前做过,请参见ln(1-x²)=-ln(1/(1-x²)),与你的题只差一个负号,所以你这题结果是:2ln2-2
平方在哪里再问:在后面的x上再答:
收敛,狄利克雷判别法.