lnx √(1-x²)的积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:37:40
求定积分 ∫1/x√lnx(1-lnx)dx 积分上限e^3/4 下限√e

令u=lnx,du=1/xdx当x=√e,u=1/2当x=e^(3/4),u=3/4∫(√e~e^(3/4))1/[x√(lnx*(1-lnx))]dx=∫(1/2~3/4)1/√[u*(1-u)]d

(x/lnx)/(1+x^2)的平方 dx,上限2,下限1,求定积分

原式=x^2/Inx(1+x^2)^2|(1→2)-∫(1→2)dx^3/Inx2(1+x^2)^2=[x^2-(x^3/2)]/Inx(1x^2)^2|(1→2)=0(由于分母总是等于0,本题考察分

x*lnx dx的积分怎么算?

分步积分=0.5积分号lnxdx*x=0.5x*x*lnx-0.5x*x

lnx/x定积分

∫lnx/xdx=lnlnx+c

急!求一道关于定积分的数学题 (1+lnx)/x在1到e上的定积分

原式={(1+lnx)d(lnx)=lnx+[(lnx)^2]/2=1-0+1/2-0=3/2

[(lnx)^2]/(x^2)的积分

原式=-∫(lnx)²d(1/x)=-(lnx)²/x+∫(1/x)d(lnx)²=-(lnx)²/x+∫2lnx/x²dx=-(lnx)²

计算积分∫1/(x*lnx)dx

∫1/(x*lnx)dx=∫lnxdlnx=1/2*(lnx)^2

高数题 用定积分的换元积分法求 ∫(1,e^3) dx/x√(4-lnx)

令u=lnx,x=e^u,dx=e^udu故∫(0,3)dx/[x√(4-lnx)]=∫(0,3)e^u/[e^u·√(4-u)]du=∫(0,3)1/√(4-u)du=-2√(4-u)|(0,3)=

求lnx-1/(lnx)^2的积分

原式=∫dx/lnx-∫dx/ln²x=∫dx/lnx-∫xd(lnx)/ln²x(∵dx=xlnx)=∫dx/lnx-(-x/lnx+∫dx/lnx)+C(第二个积分应用分部积分

1/[x乘以根号(1+lnx)]的定积分{上限为e^2,下限为1}

I=∫(1,e²)dx/(x√(1+lnx))设t=√(1+lnx),t²=1+lnx,x=e^(t²-1),dx=e^(t²-1)*2tdtI=∫(1,e&#

1/x((lnx)^2)的积分是多少

原式=∫d(lnx)/(lnx)^2=-1/lnx+C再问:∫上面是正无穷,下面是e的反常积分是多少。。。再答:原式=-1/lnx|(e→+∞)=0+1=1(因为lim(t→+∞)-1/lnt=0)

求积分∫dx/x*√(lnx(1-lnx)) 积分上限为e 下限为 √e

然后可以令lnx=(sint)^2,积分范围是t从π/4到π/2∫1/√lnx(1-lnx)d(lnx)=∫(2sintcost/sintcost)dt=2∫dt=π/2

利用级数求定积分的值∫(0到1)lnx*ln(1-x)dx

当x∈(0,1)时,有ln(1-x)=-Σ1/n*x^n(n从1到+∞)故∫(0到1)lnx*ln(1-x)dx=∫(0到1)lnx*[-Σ1/n*x^n]dx(n从1到+∞)=-Σ∫(0到1)lnx

定积分 ∫√x(根X)lnx dx

∫√xlnxdx=∫lnxd(2/3x^(3/2))=lnx*2/3x^(3/2)-∫2/3x^(3/2)d(lnx)=lnx*2/3x^(3/2)-∫2/3x^(3/2)*dx/x=lnx*2/3x

求积分√(1+lnx)/x dx

解;∫(√1+lnx)/xdx=∫√1+lnxd(1+lnx)=∫√udu=2/3(1+lnx)^(3/2)+C

积分∫(f'(lnx)/(x√f(lnx)))dx=

∫(f'(lnx)/(x√f(lnx)))dx=∫(f'(lnx)/√f(lnx)d(lnx)=∫[f(lnx)]^(-1/2)df(lnx)=2√f(lnx)+C

积分x(lnx)^2dx

有分部积分知识可知:∫x(lnx)²dx  =(1/2)∫(lnx)²d(x²)=x²(lnx)²/2—∫xlnxdx=x²(lnx)

求(1-lnx)/(x+lnx)^2的积分 (x+lnx)^2为x+lnx的平方

(lnx))/(x+lnx)开始我试着用凑微分的方式做,无果.然后我观察了下,由于是(x+lnx)^2做分母,所以认为是一个以(x+lnx)为分母的分式,设分子为(Ax+Blnx).求导,待定系数求出