lnx √(1-x²)的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:37:40
令u=lnx,du=1/xdx当x=√e,u=1/2当x=e^(3/4),u=3/4∫(√e~e^(3/4))1/[x√(lnx*(1-lnx))]dx=∫(1/2~3/4)1/√[u*(1-u)]d
原式=x^2/Inx(1+x^2)^2|(1→2)-∫(1→2)dx^3/Inx2(1+x^2)^2=[x^2-(x^3/2)]/Inx(1x^2)^2|(1→2)=0(由于分母总是等于0,本题考察分
分步积分=0.5积分号lnxdx*x=0.5x*x*lnx-0.5x*x
∫lnx/xdx=lnlnx+c
原式={(1+lnx)d(lnx)=lnx+[(lnx)^2]/2=1-0+1/2-0=3/2
原式=-∫(lnx)²d(1/x)=-(lnx)²/x+∫(1/x)d(lnx)²=-(lnx)²/x+∫2lnx/x²dx=-(lnx)²
∫1/(x*lnx)dx=∫lnxdlnx=1/2*(lnx)^2
令u=lnx,x=e^u,dx=e^udu故∫(0,3)dx/[x√(4-lnx)]=∫(0,3)e^u/[e^u·√(4-u)]du=∫(0,3)1/√(4-u)du=-2√(4-u)|(0,3)=
原式=∫dx/lnx-∫dx/ln²x=∫dx/lnx-∫xd(lnx)/ln²x(∵dx=xlnx)=∫dx/lnx-(-x/lnx+∫dx/lnx)+C(第二个积分应用分部积分
I=∫(1,e²)dx/(x√(1+lnx))设t=√(1+lnx),t²=1+lnx,x=e^(t²-1),dx=e^(t²-1)*2tdtI=∫(1,e
原式=∫d(lnx)/(lnx)^2=-1/lnx+C再问:∫上面是正无穷,下面是e的反常积分是多少。。。再答:原式=-1/lnx|(e→+∞)=0+1=1(因为lim(t→+∞)-1/lnt=0)
点击放大:
然后可以令lnx=(sint)^2,积分范围是t从π/4到π/2∫1/√lnx(1-lnx)d(lnx)=∫(2sintcost/sintcost)dt=2∫dt=π/2
有用请及时采纳,谢谢!~
当x∈(0,1)时,有ln(1-x)=-Σ1/n*x^n(n从1到+∞)故∫(0到1)lnx*ln(1-x)dx=∫(0到1)lnx*[-Σ1/n*x^n]dx(n从1到+∞)=-Σ∫(0到1)lnx
∫√xlnxdx=∫lnxd(2/3x^(3/2))=lnx*2/3x^(3/2)-∫2/3x^(3/2)d(lnx)=lnx*2/3x^(3/2)-∫2/3x^(3/2)*dx/x=lnx*2/3x
解;∫(√1+lnx)/xdx=∫√1+lnxd(1+lnx)=∫√udu=2/3(1+lnx)^(3/2)+C
∫(f'(lnx)/(x√f(lnx)))dx=∫(f'(lnx)/√f(lnx)d(lnx)=∫[f(lnx)]^(-1/2)df(lnx)=2√f(lnx)+C
有分部积分知识可知:∫x(lnx)²dx =(1/2)∫(lnx)²d(x²)=x²(lnx)²/2—∫xlnxdx=x²(lnx)
(lnx))/(x+lnx)开始我试着用凑微分的方式做,无果.然后我观察了下,由于是(x+lnx)^2做分母,所以认为是一个以(x+lnx)为分母的分式,设分子为(Ax+Blnx).求导,待定系数求出