线性方程组什么时候用增广矩阵什么时候用行列式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 02:53:56
线性方程组AX=b的增广矩阵 经初等行变换化为

λ=-1无解λ≠-1且λ≠0时有唯一解λ=0有无穷多解,此时1214-10132100000r1-2r210-50-30132100000通解为:(-3,1,0,0)'+c1(5,-3,1,0)'+c

齐次线性方程组有增广矩阵吗

有,即是(A,0).但是没有多少实质的作用!不用影响秩的求解,在化为阶梯形矩阵时也没有多大影响!

已知非其次线性方程组有解,他的增广矩阵列向量为什么线性相关

非齐次线性方程组Ax=b有解的充要条件是b可由A的列向量组线性表示所以(A,b)的列向量组线性相关.

再求解一道题目 用克莱姆法则或增广矩阵的初等行变换解线性方程组

增广矩阵=11162-113-1-110r2-2r1,r3+r111160-3-1-90026r3*(1/2),r1-r3,r2+r311030-30-60013r2*(-1/3),r1-r21001

从给出的线性方程组的增广矩阵 可以看出此方程组有几个方程,几个未知数?

如果是增广矩阵,则行数就是方程的个数,列数减1就是未知量的个数

一道题目用增广矩阵的方法解线性方程组,求教

解:(A,B)=13234-1265883-1-313-416用初等行变换化为130-14-11001205000000所以R(A)=2,A不可逆此时相当于3个线性方程组Ax=Bi分别求出通解作为列向

对增广矩阵作初等行变换解下列线性方程组

增广矩阵=21-1113-22-3251-12-12-11-34r3-2r1,r2-r421-1111-110-21-110-32-11-34r3-r202-24-31-110-20000-12-11

非齐次线性方程组,无解的充要条件是 原矩阵的秩 不等于 增广矩阵的秩 ;还是原矩阵的秩小于增广矩

原矩阵的秩不可能大于增广矩阵的秩吧?再问:对对,你说的对……两个秩相等才有解,不等无解(也只能小于)

线性方程组的增广矩阵能不能用列变换?

增广矩阵只能用初等行变换,而不能用列变换.但是可以任意交换两列的顺序你把增广矩阵看做几个N元一次方程组的系数和值就可以了.这样就很清晰啊了,交换列未知数当然要变

线性代数中,解线性方程组时,什么时候用系数矩阵A什么时候用增广矩,什么时候用系数行列式?

当方程组是齐次线性方程组时用系数矩阵当是非齐次线性方程组时用增广矩阵.当方程组中方程的个数与未知数的个数相同,且系数行列式不等于0时,可以用行列式.

某非齐次线性方程组Ax=b的增广矩阵B经过数次行初等变换后为

R(A)=2,R(B)=3,由于R(A)≠R(B),故而方程组无解.

非齐次线性方程组系数矩阵的秩为什么等于其增广阵的秩?

是这样“即向量B可以由矩阵A的列向量线性表示,有rA=r(A,B)”这个命题是对的设A的列向量的极大无关组为β1,……βr,则这r个向量不仅可以表示A的列向量,由于B可有A的列向量线性表出,故B可由β

解线性方程组时增广矩阵变换

其实不用变换你也可以求解,只是变换之后容易看得出来,化到行最简型.再问:能具体点吗再答:再问:那无解是矩阵等于零吗再答:不是。是非齐次方程不相容再答:也看i就是矩阵的秩不等于增广矩阵的秩

根据线性方程组的增广矩阵求解的情况

选D,有无穷多解对于增广矩阵,他是线性方程组的矩阵表现形式,最后一列是常数项,前面的几列是方程组的系数.所以,在本题中,只看前面的4*4矩阵,但是,其中,第二行和第三行是线性相关的,所以,有一个自由项

已知增广矩阵为的线性方程组无解,a=

1-2r2004-2a-901a43571当4-2a=0即a=2时,r(A)=2,r(A,b)=3所以a=2时方程组无解

已知线性方程组,则(1)线性方程组的增广矩阵的行最简行矩阵?(2)系数矩阵和增广矩阵的秩为?

增广矩阵=1-4-13740-4174-157-1682-8-175793-12-3111120r2+4r1,r3-2r1,r4-3r11-4-13740010-9-80011-100000r1+4r

线性方程组AX=b的增广矩阵

a=3时有解;2) 1    2   -3    1  &n