ln√x² y²=arctany÷x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:15:49
求导arctany/x=根号[ln(x^2+y^2) ] .根号在ln外面的

两边对x求导得1/[1+(y/x)^2]*(y/x)'=1/[ln(x^2+y^2)]*[ln(x^2+y^2)]'1/[1+(y/x)^2]*(y'x-y)/x^2=1/[2ln(x^2+y^2)]

设y=ln ln ln x,求y’

y'=(lnlnx)'/lnlnx=(lnx)'/lnxlnlnx=1/xlnxlnlnx

ln[根号(x^2+y^2)] =arctany/x 求dy

1/2*ln(x^2+y^2)=arctany/x两边对x求导,得1/2*1/(x^2+y^2)*(2x+2y*y')=1/[1+(y/x)^2]*(y'*x-y)/x^2化简得y'=(x+y)/(x

y=ln(ln√x)的导数

你做的是对的y=ln(ln√x)y`=[lh(ln√x)]`=1/ln√x*(ln√x)`=(1/ln√x)*(1/√x)*(√x)`=(1/ln√x)*(1/√x)*(1/2)/√x=1/(2xln

x=y+arctany 求隐函数的导数dy/dx.

y+arctany-x=0dy/dx+1/(1+y^2)dy/dx-1=0dy/dx(1+1/(1+y^2)=1dy/dx=(1+y^2)/(2+y^2)

y=ln[ln(ln x)] 求导

复合函数f(x)=lnxg(x)=ln[ln(x)]r(x)=ln{lnln(x)]}r'(x)=[1/lnln(x)]g'(x)=[1/lnln(x)][1/ln(x)]f'(x)=[1/lnln(

已知x+arctany=y,求函数y=(x)的导数y'?

x+arctany=y两边对x求导有:1+y'/(1+y²)=y'整理得:y'=1+1/y²

设y=2arctany/x,求dy/dx,dy^2/d^2x.

设y=2arctan(y/x),求dy/dx,d²y/dx².设F(x,y)=y-2arctan(y/x)=0,则dy/dx=-(∂F/∂x)/(ͦ

求y=Ln(Ln(Ln x))的导数

y=(ln(ln(x))'/ln(ln(x))=(ln(x))'/(ln(x)(ln(ln(x)))=1/(xln(x)ln(ln(x)))

设函数y=y(x)由方程ln(x^2+y^2)^1/2=arctany/x所确定,求dy/dx.

见图再问:不好意思啊~题目看错了,题目如图啊~

求函数的导数 1.y=arcsin(cosx) 2.arctany/x=ln根号下x平方+y平方

1.y=arcsin(cosx)y'=[1/√(1-cos²x)](-sinx)=-sinx√(1-cos²x)/sin²x=-|sinx|/sinx∴当sinx>0时y

设z=arctany/x,求dz?

是(arctany)/x还是arctan(y/x)?如果是z=(arctany)/x,则∂z/∂x=-(arctany)/x²∂z/∂y=1/

y=ln(x+√x^2+1),求y

x≤0时√x^2=-x所以y=0x>0时√x^2=x所以y=ln(2x+1)

x+y=arctany 隐函数求导数

利用查表或反函数求导法可求得(arctanu)'=1/(1+u^2)∴上述方程两边分别对x求导可得1+y'=y'/(1+y^2)=>(1+y^2)+(1+y^2)y'=y'=>(1+y^2)+y^2y

证明arctanx+arctany=arctan(x+y/1-xy),其中xy不等於1

左右2边取正切,左边=(X+Y)/(1-XY)=右边.左边=arctan[(X+Y)/(1-XY)+Z]/[1-(X+Y)Z/(1-XY)]=arctanc(X+Y+Z-XYZ)/[1-XY-(X+Y

tan(arctanX+arctanY)=(X+Y)/(1-XY)

❶证明:tan(arctanX+arctanY)=(X+Y)/(1-XY)证明:tan(arctanx+arctany)=(tanarctanx+tanarctany)/[1-(tana

求导arctany/xIn√(x²+y²)(x²+y²)sin3/(x²

全微分吗?z=arctan(y/x)∂z/∂x=1/(1+y²/x²)*y=x²y/(x²+y²)∂z/ͦ