若 =4,是可立方阵的一个特征值,则必有一个特征值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:07:40
设2是矩阵A的特征值,若|A|=4,证明2也是矩阵A*的特征值

由公式AA*=|A|E可以知道,AA*=4E,2是矩阵A的特征值,设特征向量为a那么Aa=2a所以A*Aa=2A*a代入AA*=4E,得到4a=2A*a即A*a=2a那么显然由特征值的定义可以知道,2

设A是三阶矩阵,它的特征值是-1,1,4,若A+B=2E,求矩阵B的特征值.E+A^-1的特征值与A^-1一样吗?

A的特征值是-1,1,4所以B=2E-A的特征值是(2-λ):3,1,-2.E+A^-1与A^-1的特征值不同若a是A^-1的特征值,则a+1是E+A^-1的特征值

高等代数特征值证明:若A^=A 则A的特征值只能是0或1若A^=0 则A的特征值全是0

请问^表示什么意思,平方么.任取一个特征值为n的特征向量a.则AAa=Aa,即nna=na,所以nn=n,所以n=0或1.第二个类同,nn表示n乘以n

求解一道线代题A是一个2*2的矩阵 其特征值全为整数 若detA=120 解释为什么A一定可对角化

因为120不是完全平方数,所以A必有两个不相同的特征值,从而A一定可对角化.再问:能不能说的详细一点谢谢再答:由于特征值全为整数,可设特征多项式为:λ(λ-λ1)(λ-λ2)=λ^2-(λ1+λ2)λ

一个特征值对应的特征向量是唯一的吗?一个特征向量对应的特征值唯一吗

特征方程有重根的时候,此时特征值对应的特征向量就不是唯一的了

设2是矩阵A的特征值,若1A1=4,证明2也是矩阵A*的特征值

2是矩阵A的特征值,则(1/2)是矩阵A^(-1)的特征值.A*=|A|A^(-1)=4A^(-1),则4*(1/2)是矩阵A*的特征值,即2也是矩阵A*的特征值.

设x=2是可逆矩阵A的一个特征值,则矩阵(1/3A^2)^-1的一个特征值是多少?请具体证明?

2是A的特征值则2^2=4是A^2的特征值所以4/3是(1/3)A^2的特征值所以3/4是(1/3A^2)^-1的一个特征值再问:则2^2=4是A^2的特征值请证明这句话。再答:这不知道啊,这是教材中

一个可相似对角化的矩阵A,特征值是λ1,λ2……λn,

不是的,这个对角阵中的元素λ1λ2……λn怎么排列都是可以的,只要确定了就是这么几个数字就可以

设λ=2是可逆矩阵A的一个特征值,则矩阵(A2)-1必有一个特征值等于?

如果(A2)-1意思是(A^2)^-1,则矩阵(A2)-1必有一个特征值等于1/4.设X是λ=2对应的特征向量,则AX=2X,A^2X=AAX=2AX=4X,即A^2X=4X,故得(1/4)X=(A^

线性代数 特征值小题 1.设λ0是可逆阵A的一个特征值,则A-2必有一个特征值是?2.设λ0是可逆阵A的一个特征值,则k

由于特征值公式是λa=Aa所以把A矩阵的地方用λ0代替就可以了.那个kI因为I是单位阵,所以折算成数值的时候去掉就行了.个人理解,可以这么做...

设λ是n阶矩阵A的一个特征值,求证:若A可逆,则1/λ是n阶矩阵A-1;的一个特征值

λ是矩阵A的一个特征值,则存在非零向量X,AX=λX,故(1/λ)X=A^-1X,即A^-1X=(1/λ)X,1/λ是n阶矩阵A-1的一个特征值

线性代数问题,n阶矩阵A可对角化,a是它的一个特征值,xo是它对应的特征向量,证(aE-A)x=xo无解

这主要是关于A“可对角化"这个性质的.如果你知道Jordan标准型,那么可以想象,如果(aE-A)x=x_0有解的话,那么A在化成Jordan型之后,涉及x_0的那部分不是对角化的,而是一个大一些的J

若已知矩阵A,如何求它的合同矩阵?是先求出A的特征值,然后用这些特征值组成的一个对角矩阵吗?

首先,要求合同矩阵的话大前提是对称矩阵,因为一般的矩阵不一定可以对角化,否则若当标准型就没用了.其次,你说的做法是可以的,求出来的矩阵是对角矩阵,而且T是正交矩阵,或者你也可以把A与E放在一起,A上E

已知λ=2是可逆矩阵A的一个特征值,则(1/2A^2)^-1有怎样的一个特征值

由已知(1/2)2^2=2是(1/2)A^2的特征值所以1/2是((1/2)A^2)^-1的特征值

若3是n*n阶矩阵A的特征值,行列式|A|=2,则A的伴随矩阵的一个特征值为几?为什么?

一个特征值是2/3,分析如图.经济数学团队帮你解答,请及时采纳.

矩阵与变换1.设λ是矩阵A的一个特征值,求证:λ2是A2的一个特征值若A2=A,求证:A的特征值是0或1

λ是矩阵A的一个特征值则λp=Ap两遍同时乘以λ则λ^2p=λAp=A(λp)=A(Ap)=A^2p则λ^2是A^2的一个特征值

设λ=0是n阶方阵A的一个特征值,则|A|=?

行列式的值等于特征值乘积0

线性代数 求特征值aRT 已知12是A的一个特征值 求a和其他两个特征值

因为12是A的特征值,所以|A-12E|=0.|A-12E|=-54-14-5-1-4a-8=-9(a+4)所以a=-4.所以A=74-147-1-4-44|A-λE|=7-λ4-147-λ-1-4-