若 =4,是可立方阵的一个特征值,则必有一个特征值为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:07:40
由公式AA*=|A|E可以知道,AA*=4E,2是矩阵A的特征值,设特征向量为a那么Aa=2a所以A*Aa=2A*a代入AA*=4E,得到4a=2A*a即A*a=2a那么显然由特征值的定义可以知道,2
A的特征值是-1,1,4所以B=2E-A的特征值是(2-λ):3,1,-2.E+A^-1与A^-1的特征值不同若a是A^-1的特征值,则a+1是E+A^-1的特征值
请问^表示什么意思,平方么.任取一个特征值为n的特征向量a.则AAa=Aa,即nna=na,所以nn=n,所以n=0或1.第二个类同,nn表示n乘以n
因为120不是完全平方数,所以A必有两个不相同的特征值,从而A一定可对角化.再问:能不能说的详细一点谢谢再答:由于特征值全为整数,可设特征多项式为:λ(λ-λ1)(λ-λ2)=λ^2-(λ1+λ2)λ
特征方程有重根的时候,此时特征值对应的特征向量就不是唯一的了
2是矩阵A的特征值,则(1/2)是矩阵A^(-1)的特征值.A*=|A|A^(-1)=4A^(-1),则4*(1/2)是矩阵A*的特征值,即2也是矩阵A*的特征值.
2是A的特征值则2^2=4是A^2的特征值所以4/3是(1/3)A^2的特征值所以3/4是(1/3A^2)^-1的一个特征值再问:则2^2=4是A^2的特征值请证明这句话。再答:这不知道啊,这是教材中
不是的,这个对角阵中的元素λ1λ2……λn怎么排列都是可以的,只要确定了就是这么几个数字就可以
如果(A2)-1意思是(A^2)^-1,则矩阵(A2)-1必有一个特征值等于1/4.设X是λ=2对应的特征向量,则AX=2X,A^2X=AAX=2AX=4X,即A^2X=4X,故得(1/4)X=(A^
由于特征值公式是λa=Aa所以把A矩阵的地方用λ0代替就可以了.那个kI因为I是单位阵,所以折算成数值的时候去掉就行了.个人理解,可以这么做...
λ是矩阵A的一个特征值,则存在非零向量X,AX=λX,故(1/λ)X=A^-1X,即A^-1X=(1/λ)X,1/λ是n阶矩阵A-1的一个特征值
这主要是关于A“可对角化"这个性质的.如果你知道Jordan标准型,那么可以想象,如果(aE-A)x=x_0有解的话,那么A在化成Jordan型之后,涉及x_0的那部分不是对角化的,而是一个大一些的J
2-2*(1/2)=1.
首先,要求合同矩阵的话大前提是对称矩阵,因为一般的矩阵不一定可以对角化,否则若当标准型就没用了.其次,你说的做法是可以的,求出来的矩阵是对角矩阵,而且T是正交矩阵,或者你也可以把A与E放在一起,A上E
由已知(1/2)2^2=2是(1/2)A^2的特征值所以1/2是((1/2)A^2)^-1的特征值
一个特征值是2/3,分析如图.经济数学团队帮你解答,请及时采纳.
λ是矩阵A的一个特征值则λp=Ap两遍同时乘以λ则λ^2p=λAp=A(λp)=A(Ap)=A^2p则λ^2是A^2的一个特征值
行列式的值等于特征值乘积0
根据题意,应该有x≠0.由于1
因为12是A的特征值,所以|A-12E|=0.|A-12E|=-54-14-5-1-4a-8=-9(a+4)所以a=-4.所以A=74-147-1-4-44|A-λE|=7-λ4-147-λ-1-4-