若acos^2C 2 cos^2A 2=3b 2,证明:a c=2b
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:34:53
三角函数证明方法(1)证明一个等式有几种思路:1、从一边到另一边;2、先证明另一个等式成立,从而推出需要证明的等式成立;3、证明左右等于同一个式子;另外三角恒等式证明中要善于用“1”.(2)方法一:消
由正弦定理asinA=bsinB=csinC=2R,得:sinB-sinC=2sinA•cos(60°+C),…(2 分)∵A+B+C=π,故有:sin(A+C)−sinC=sinAcosC
已知函数f(x)=Acos(wx+φ)(A>0,W>0,-π/2
第一问的方法是将1拆成sin²a+cos²a,然后就能算了第二问用到常用的倍角公式:cos2θ=cos²a-sin²a=2cos²a-1=1-2sin
(1)因为f(x)的最大值为3,所以A=2.f(x)=2cos^2(wx+φ)+1=cos(2wx+2φ)+2.f(x)的图像的相邻两对称轴间的距离为2,则最小正周期为4.T=2π/2w=4,则w=π
解题思路:三角函数。解题过程:解:因为是方程f(x)=0的解.所以0=sin+a,所以a=-2,∴=sinx-cosx-1=sin(x-)-1,x∈[0,π],所以,sin(x-),sin(x-)-1
/>老师说的没错,o(∩_∩)o...哈哈!写到“sinB-sinC=sinAcosC-√3sinAsinC”的时候,因为sinB=sin(A+C)=sinAcosC+cosAsinC所以cosAsi
明白了,是偶看错了刚才.A=2π/3因为b-c=2acos(π/3+C)所以sinB-sinC=2sinA(1/2cosC-√3/2sinC)所以sinB-sinC=sinAcosC-√3sinAsi
cos²(c/2)=(1+cosC)/2cos²(A/2)=(1+cosA)/2就有(a+c)/2+1/2(acosC+ccosA)=3b/2再用余弦定理把cos转化就出来了.
cos(2a)=1/4[sin(2a)]^2=1-[cos(2a)]^2=1-1/16=15/16(cosa)^4+(sina)^4+(sina)^2(cosa)^2=[(cosa)^2+(sina)
令cosx=t则y=t^2-2at+a^2+a-1(-1≤t≤1)这是关于t一元二次方程对称轴为a若a≥0.y在f(-1)处取得最小值即1+2a+a^2+a-1=1/2解得a=(-3+√11)/2若a
别灰心.(1)f(x)=sin(x+π/4)+√2cos(x+π/2)(改题了)=(1/√2)(sinx+cosx)-√2sinx=(1/√2)(cosx-sinx)=cos(x+π/4),x∈[0,
原式=sin^2a+sin^2β-(1-cos^2a)sin^2β+cos^2acos^2β=sin^2a+cos^2asin^2β+cos^2acos^2β=sin^2a+cos^2a(sin^2β
acos^2C/2+ccos^2A/2=3b/2a*(cosC+1)/2+c*(cosA+1)/2=3b/2acosC+a+ccosA+c=3bacosC+a+ccosA+c=2b+b,a/sinA=
因为当θ超过π/2的时候2acosθ是一个负值(假定a>0)那么负的长度就应该反向画出!、比如(π,-2a),-2a的落点在右边一个圆的最右端那个点!你的错误在于:把直角坐标和极坐标搞混淆了,认为(π
1)f(x)=a[1/2*sin2x-√3/2*(1+cos2x)+√3/2]+b=a[1/2sin2x-√3/2cos2x]+b=asin(2x-π/3)+b因为a>0,所以单调减区间为:2kπ+π
a[2cos²(C/2)]+c[2cos²(A/2)]=3b--->a(1+cosC)+c(1+cosA)=3b--->a(a²+b²-c²+2ab)
sin^6α+cos^6α+3sin^2αcos^2α=(sin^2a)^3+(cos^2a)^3+3sin^2αcos^2α=(sin^2a+cos^2a)(sin^4a-sin^2acos^2a+