若D是由y=x2和y=4x围成,求D的面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:40:50
如图阴影部分表示x-2y≥0x+3y≥0,确定的平面区域,所以劣弧.AB的弧长即为所求.∵kOB=-13,kOA=12,∴tan∠BOA=|12+131-12×13|=1,∴∠BOA=π4.∴劣弧AB
注意到积分区域,1-x^2-y^2大于等于零. 利用极坐标可得 再问:我不知道你怎么想的啊,说明白点撒。再答:积分区域内,1-x^2-y^2大于等于零。所以绝对值没有用。还是...
先将y2=x化成:y=x,联立的:y=x2y=x因为x≥0,所以解得x=0或x=1所以曲线y=x2与y=x所围成的图形的面积S=∫01(x-x2)dx=23x32-13x3|01=13故答案为:13.
V=∫πX^2dy(y=0->1)=∫π(1-y)dy=π/2
y=2-x2+应该是y=2-x^2吧?若是,解法如下:联立y=2-x^2和y=x得交点为(1,1)、(-2,-2)∫(2-x^2-x)dx=[2x-0.5x^2-(1/3)x^3]=4.5(积分上下限
设(X,Y)的联合密度函数f(x,y)=a(x,y)∈D首先有概率完备性知1=∫∫f(x,y)dxdy=∫∫adxdy=a∫(0,1)dx∫(x^2,x)dy=a/6所以a=6.(X,Y)的联合密度函
先画出积分区间,显然y=1/x和y=x的交点是(1,1)那么x的积分区间是(1,2)于是原积分=∫(1到2)3xdx*∫(1/x到x)1/y²dy=∫(1到2)3xdx*(-1/y)代入y的
虽然积分区域是关于x轴对称的.但是被积函数(x+y)³却不是对称的.所以不能用对称性解吧~~假设有两个四面体,虽然它们的底都是同样的三角形,但是它们的高不一样,所以体积也未必一样.所以∫∫_
y=x=>θ=π/4y=x^4=>rsinθ=(rcosθ)^4=>r^3=sinθ/(cosθ)^4=>r=[sinθ/(cosθ)^4]^(1/3)I=∫[0->π/4]∫[0->[sinθ/(c
由于抛物线y=x2和直线y=x的交点为(0,0)和(1,1)因此,以x为积分变量,得面积A=∫10(x−x2)dx=16.
如图所示:所围城的平面图形的面积的近似值=4.47
曲线y=√x与直线y=x的交点为(0,0)和(1,1)于是积分区域D={(x,y)|y²≤x≤y,0≤y≤1}从而原式=∫[0,1]siny/ydy∫[y²,y]1dx=∫[0,1
联立y=x−2y=−x2,得x1=-2,x2=1.所以,A=∫−21(x−2)dx−∫−21(−x2)dx=(x22−2x)|1−2+13x3| 1−2=−92,故所求面积s=92.
∫∫(√x+y)dxdy=∫dx∫(√x+y)dy=∫(15/2)x²dx=(5/2)x³|=5/2
被积区域如下图以极坐标表示,设x=r·cosθ,y=r·sinθ则被积区域可表示为,0≤θ≤π/4,0≤r≤1/cosθarctan(y/x)=θ则有再问:我感觉积分区域应该是右下侧那部分,1/cos
{y=√x{y=x²==>交点为(0,0),(1,1)∫∫_Dx√ydσ=∫(0→1)x∫(x²→√x)√ydy=∫(0→1)x·(2/3)y^(3/2):(x²→√x)
这道题用极坐标变换便不好做,因为积分范围真的是不好确定. 应该是用积分变化.令y=y,和z=y-x,这时有范围a再问:这个方法懂的。是正确答案,谢谢啦只是老师要求用极坐标做啊……再答:极坐标的不好写
X区域:D:x=2,y=1,y=x==>1≤x≤2,1≤y≤x∫∫_Dxydxdy=∫(1→2)dx∫(1→x)xydy=∫(1→2)[xy²/2]:(1→x)dx=∫(1→2)(x