若存在过点o(0,0)的直线l与曲线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:44:34
焦点F(-1,0),设直线l的方程为:y=k(x+1),A(x1,y1),B(x2,y2)联立x^2/2+y^2=1和y=k(x+1),得到(1+2k^2)+4k^2x+(2k^2-2)=0x1+x2
y’=2x,f’(x)=3x^2一6x+2y’=f’(x)求出x=?求出f’(?)=!得出直线丨的表达式y=!X,求出当x=?时y=?X!=~,把点(?,~)代入y=X^2+a中即可求出a的值
设A(x1,-x1^2/2)、B(x2,-x2^2/2),L的方程为y=kx-1,代入y=-x^2/2得:x^2+2kx-2=0,x1+x2=-2k.kOA=-x1/2,kOB=-x2/2.kOA+k
显然存在.直线L与OA平行,故两者的斜率相同,均为-2,直线OA的方程是y=-2x,原点到直线L的距离为根号5/5,设L方程为y=-2x+m,则有│m│/根号下((-2)²+1)=根号5/5
设A(x1,x1^2/4)、B(x2,x2^2/4),直线方程为y=kx+2代入x^2=4y得:x^2-4kx-8=0x1+x2=4k(x1^2/4)/x1+(x2^2/4)/x2=x1/4-x2/4
个人感觉是不存在这样的直线l.假设存在,亦知l与x轴垂直时不满足条件,l与x轴平行时亦不满足条件,所以可以设出l的方程为y=kx+1,与抛物线方程y=-x^2/2联立,整理得:x^2+2kx+2=0因
设y=kx+b,过A(0,根号10),则b=根号10过原点且垂直于y=kx+b的直线方程为y=-x/k垂足为B满足-x/k=kx+b即-(k+1/k)x=b,x=-bk/(k^2+1),y=b/(k^
(1)a²+1=4a=√3(2)OM斜率为√3直线l斜率为-1/√3=-√3/3
设该直线为y=kx-1(∵y+1=kx),与y=-x²/2联立得:kx-1=-x²/2,得:x²+2kx-2=0两根x1,x2为两交点横坐标,根据韦达定理有x1+x2=-
(1)设C(x,y),由已知√[(x-1)^2+y^2]=|x+1|平方整理得C的轨迹方程为y^2=4x(2)当L斜率不存在时,与轨迹只有1个交点当L斜率存在时设L为y=kx+1与轨迹方程联立得k^2
我给你讲解一下方法先设函数为y=k(x-1)再分别与两函数联立,得到两交点坐标,再用两点间距离公式得出距离等于九,可以算出k
双曲线x²-y²=1的渐近线方程为:y=x和y=-x,条件“直线L过点(a,0)且以被双曲线x^2-y^2=1所截弦为直径的圆过原点”转化为:双曲线上存在P、Q点,使得经过PQ的直
keyia将x=1代入圆方程得a值,斜率OM为a,因直线与OM垂直,直线斜率与a的乘积为-1.可得直线斜率
设直线L方程y=kx+b过点M(0,1),1=k*0+b,b=1y=kx+1与y=-x^2/2交点A(x1,y1),B(x2,y2)OA斜率=y1/x1,OB斜率=y2/x2y1/x1=-x1^2/2
找一个简单的方法因为L平行于向量(0,2,1),那么L是在yoz平面上,那么先考虑A在yoz平面上的投影点B那么你应该很容易找到B到直线的距离,就是BC的长度BC⊥L,垂足是C,那么你所求的就是AC长
设直线L的方程为y=kx+3.设p为(x1,y1),q为(x2,y2).所以(x-2)^2+(y-2)^2=11y=kx+3.(x-2)^2+(y-2)^2=11得:(k^2+1)x^2+2(k-1)
斜率不存在,x=2符合距离是2斜率是k则kx-y-1-2k=0距离=|0-0-1-2k|/√(k^2+1)=2平方解得k=3/4所以x-2=0,3x-4y-10=0
(1)设椭圆方程为x^2/a^2+y^2/b^2=1,则a^2-b^2=4,----------①4/a^2+9/b^2=1,----------②由以上两式可解得a^2=16,b^2=12,因此椭圆
设x=ky+b,带点p就得b=1,这样x=ky+1,OMON斜率之和为1,设M(x1,y1)N(x2,y2).则是y1/x1+y2/x2=1将x1=ky1+1,x2=ky2+1.带入,则得到一个关于y
设两交点为B(X1,Y1)C(X2,Y2)因为直线过A(0,1)所以设此直线斜率为k,则有直线方程Y=kX+1所以存在Y1=kX1+1和Y2=kX2+1将Y=kX+1和Y^2=2X联立,可以得到一个方