若平面外一点P到平面内的三角形的三边距离相等,则这点在平面内的射影是这个三角形的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:46:11
延长BQ直线与PC交于D延长BO直线AC交于E则BQOEF在一个平面内∵O、Q为三角形ABC和PBC的垂心∴BD⊥PC,BE⊥AC∵PA⊥平面ABC,BE在平面ABC内∴PA⊥BE∴BE⊥平面PAC,
取△ABC斜边中点D,连接PD、CD.∵PA=PB,D是AB中点,PD共用,∴△PDA≌△PDB∴∠PDA=∠PDB=90°∴PD⊥AB,即△PDA和△PDB是全等的直角三角形.∵D是直角△ABC斜边
取AB的中点M,连接PM,CM∵PA=PB=25∴△APB是等腰三角形∴PM⊥AB∴PM^2=PA^2-AM^2=525∵∠ACB=90°∴MC=(1/2)AB=10∵PC=25∴PC^2=CM^2+
由CB向量=λPA向量+PB向量得CB向量-PB向量=λPA向量,即CP向量=λPA向量,那么点P一定在直线AC上.
在平面PAC中作AD垂直PC于D.根据已知平面PAC垂直平面PBC,故AD垂直面PBC,又BC在平面PBC内所以AD垂直BC,又PA垂直平面ABC,且BC在平面PBC内所以PA垂直BC,又PA与AD相
作PO⊥平面ABC,连结OA、OB、OC易知△POA≌△POB≌△POC∴OA=OB=OC∴O是△ABC的外心,即O是AB的中点取BC的中点D,连结PD、OD∴PD⊥BC∴OD=1/2AC=9∴PD=
作两条边的垂直平分线,两线交于一点,过此点作三角型所在的平面的垂线,所得线上平面外的点均是所求点.
分析:过P作PQ⊥面ABC于Q,则Q为P在面ABC的投影,因为P到A,B,C的距离相等,所以有QA=QB=QC,即Q为三角形ABC的外心,Q到三角形ABC各边的距离相等,即Q为三角形ABC的外心,所以
一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心
过P作PO⊥AB于O,连接OQ,则QO⊥AB,∠POQ=60度△POQ是直角三角形,∠PQO=90度,Q到平面M的距离就是Q到PO的距离PQ=根3,∠POQ=60度,作QM⊥PO,∠PQM=60度,∠
向量PA+向量PB+向量PC=向量AB所以向量PA+向量PB+向量PC-向量AB=0向量PA+向量PB+向量PC+向量BA=0向量PA+向量PC+(向量PB+向量BA)=0向量PA+向量PC+向量PA
可以过点P做PQ⊥平面ABC,交平面ABC于Q,连接BQ、CQ,取BC中点F,连接PF、FQ,因为PB=PC,所以可以证出△PBQ全等于△PCQ、FP垂直平分BC,所以BQ=CQ,F是BC中点所以FQ
因为O是三角形ABC的外心所以OA=OB=OC因为PA=PB=PC,PO=PO=PO所以△PAO≌△PBO≌△PCO所以∠POA=∠POB=∠POC=90°所以PO垂直平面ABC
1.平面a平行于面ABC2.A、B在面a同一侧,C在面a另一侧3.B、C在面a同一侧,A在面a另一侧4.A、C在面a同一侧,B在面a另一侧
可以把问题转化一下,ab看成是一个圆内的弦,c在圆弧ab上,而点p的位置就是圆心o的正上方,po垂直于平面α所以根据∠bca=120°可以得到∠aob=120°p到a,b,c的距离都是14就是pa=p
角越大,射影越短设距离为dtana=d/12,tan(a+π/4)=d/2因为tan(a+π/4)=(1+tana)/(1-tana)解得:d=4或6
这个超级简单啊∵S在平面ABC内的射影H在三角形ABC内∴可以以S为原点向量SASBSC为坐标轴建立空间直角坐标系∴显然S为(0,0,0)P为(2,3,6)∴PS=√(2²+3²+
P是三角形ABC所在平面&外的一点,P到三角形ABC三边的距离相等,O为P在平面&内的射影,且在三角形ABC内.求证:O是三角形ABC的内心.
因为Q与投影在平面上的连线垂直平面,这条线与PQ和投影点与Q的连线构成直角三角形你说的余弦可能错了,是正弦吧(不清楚你说的哪个角)