若抛物线y²=-2px(p>0)上有一点,其横坐标为-9,它到焦点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 01:35:35
抛物线C2:y^2=2px(p>0),此抛物线焦点坐标F2为:(p/2,0),抛物线C1:y=ax^2+bx,此抛物线焦点坐标F1为:[-b/2a,(4ac-b^2+1)/4a]∵抛物线C1:y=ax
具体见下图,单击放大:
(1)抛物线的焦点为(p/2,0),设直线方程为x=my+p/2,代入抛物线方程得y^2=2p(my+p/2),化简得y^2-2pmy-p^2=0,因为y1、y2是方程的两个根,因此,由二次方程根与系
答案是不存在.这是由抛物线的定义可知:抛物线上的任一点异于原点O的点P(x,y),满足|PF|=x+p/2>|OF|=p/2(∵x>0).
(1)焦点为F为(p/2,0)准线方程y=-p/2|PF|=p/2理由根据抛物线的性质动点与焦点和动点到准线的距离相等(2)直线L经过抛物线y^2=2px(p>0)的焦点F当L平行于准线时FA=FB|
证:设定点M坐标为(m,n),动点A坐标(x1,y1),B坐标(x2,y2)抛物线上的点到焦点距离等于到准线距离,即:|AF|=x1+p/2,|MF|=m+p/2,|BF|=x2+p/2由|AF|、|
抛物线y²=2px的焦点为F(p/2, 0)PF与x轴垂直, P的横坐标与F相同,代入y²=2px, P(p/2,±p) |PF| 
点P(6,y)在抛物线y^2=2px(p>0)上,准线为l:x=-p/2,P到焦点的距离等于P到准线的距离∵PF=8∴6-(-p/2)=8∴p=4∴F到准线距离为p=4
题目有误,请改正.再问:双曲线改为x^2-y^2/3=1再答:(1)F(1,0),抛物线方程是y^2=4x,①(2)把l:y=k(x-2),即x=my+2,②其中m=1/k,代入①,得y^2-4my-
(1)y^2=-4x(2)d=2
已知d为抛物线y=2px²(p>0)的焦点到准线的距离.则pd=?x²=(1/2p)y,2P=1/2p,故P=1/4p,P/2=1/8p,焦点F(0,1/8p),准线方程y=-1/
(1)该抛物线的焦点恰好在直线x+y-1=0上.F(p/2,0)∴p/2+0-1=0p/2=1p=2抛物线方程是y^2=4x(2)从入射点P到反射点Q的路程最短即PQ最短设PQ直线x=my+1将x=m
因为两点关于直线L:x+y=1对称,所以该两点位于直线y=x+t上,且其中点位于直线L上.设两点为(x1,y1)和(x2,y2)联立y^2=2px(p>0)和y=x+t消去x,得y^2=2p(y-t)
第一问你干脆设点P(x,y),根据:P到顶点的距离等于P到l的距离,列出式子即可得出已知准线,可知道准线横坐标,假设存在点M(-p/2,a),那么你可列出直线方程,进行与抛物线联立,求出x1+x2,x
P(x0,y0)A(x1,y1)B(x2,y2)在抛物线上y0^2=2px0,y1^2=2px1,y2^2=2px2y2^2-y1^2=2px2-2px1(y2-y1)(y2+y1)=2p(x2-x1
答:准线为x=-p/2根据抛物线的定义知道:|PQ|=x1+p/2+x2+p/2=x1+x2+p所以:4=2+pp=2所以抛物线方程为:y^2=2px=4x
准线方程为x=-p/2点(2,1)到准线x=-p/2的距离为:2+p/2=3所以p=2抛物线方程为:y^2=4x.
A(1,-2)代入得:4=2p,p=2,故抛物线方程为:y^2=4x准线方程为:x=-p/2=-1OA与X轴的夹角为a,则tana=2/1=2,sina=2√5/5设L与X轴的交点为(X,0),则|X