若点o是△ABC内任意一点,证∠BOC=∠A

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:01:55
如图所示,点P是三角形ABC内的任意一点,求证:AB+AC>BP+PC

过P作PM∥AC交AB于M,过P作PN∥AB交AC于N,有AM=PN,AN=PM.△PBM中,PM+BM>PB(1)△PCN中,PN+CN>PC(2)(1)+(2)得:PM+BM+PN+CN>PB+P

点P是三角形ABC内任意一点,试说明PB+PC

PB再问:有没有更详细的再答:这个没法详细证明,只要点P是在三角形内的任意一点,它始终是比三角形的两条边短啊再答:相反的,如果点P是在三角形外的任意一点,就比那两条边长再问:那这么说这是公式了再问:太

已知:三角形ABC,O是三角形ABC内任意一点.求证:AB+AC大于OB+OC

证明AB+BC>OB+OC证:延长BO交AC于D因为AB+AD>BD=OB+OD,即AB+AD>OB+OD,又因为OD+DC>OC上述两不等式两边相加得:所以AB+AD+OD+DC>OC+OB+OD,

点O为△ABC内任意一点,试比较AB+AC与OB+OC的大小,并说明理由

AB+AC>OB+OC证明如下:延长BO交AC于E,则AB+AE>OB+OE又OE+CE>OC上边两式左右两边分别相加,得,AB+AC>OB+OC

已知点O为△ABC所在平面内一点,若向量OA+向量OB+向量OC=0,则点O是△ABC的

已知点O为△ABC所在平面内一点,若向量OA+向量OB+向量OC=0,则点O是△ABC的重心

已知三角形ABC,点P是平面ABC外一点,点o是点p在平面ABC上的射影,且点o在三角形ABC内

一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心

已知:O为三角形ABC内任意一点,

分析:构造出两个三角形,使之包含结论中的4条线段,可利用“三角形两边之和大于第三边”解决问题.延长BO交AC于D,则在△ABD中,AB+AD>OB+OD.在△ODC中,OD+DC>OC.所以AB+AD

如图 已知O是 三角形ABC 内任意一点 求证 OB+OC

有图吗?发一个,再问:忘了..再答:证明ABBC>OBOC证:延长BO交AC于D因为ABAD>BD=OBOD,即ABAD>OBOD,又因为ODDC>OC上述两不等式两边相加得:所以ABADODDC>O

已知o为三角形abc内任意一点,求证

1.bo+oc+bc<ab+ac+bc则bo+oc<ab+ac2.oa+ob大于aboa+oc大于acob+oc大于bc则三式加起来就是OA+OB+OC>½(AB+BC+AC)再问:麻烦你,

一道空间向量的题目已知点G是△ABC的重心,O是空间内任意一点,若OA+OB+OC=λOG(都是向量,我打不出来),求λ

a(x1,y1,z1)b(x2,y2,z2)c(x3,y3,z3)g((x1+x2+x3)/3,(y1+yy2+y3)/3,(z1+z2+z3)/3)OA+OB+OC=λOG(x1+x2+x3,y1+

已知点O是三角形ABC内任意一点,连接OA并延长到E,使得AE=OA 以OB,OC,为邻边作平行四边

1,连接AH.OBFC为平行四边形,点H为OF、BC中点.AB=AC 点H为BC中点  AH⊥BCAH=√3BC/2OA/OE=1/2OH/OF=1/2OA/OE=OH/OFAH//EFEF⊥BCAH

如图,点P是△ABC内任意一点,试说明PB+PC

证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC所

如图所示,已知点D是△ABC内任意一点,连结BD、DC,试说明AB+AC>DB+DC

AB+AC>BD+CD证明:延长CD交AB于E∵在△ACE中AC+AE>CE∴AC+AE>CD+DE∵在△BDE中BE+DE>BD∴AC+AE+BE+DE>CD+DE+BD∴AB+AC>BD+CD

如图,△ABC是边长为2的等边三角形,点O是△内任意一点,OD⊥AB于D,OE⊥BC于E,OF⊥AC

没看到图呢?请问你求什么?答案一:求证:OD+OE+OF=BC.延长FO交BC于G,得平行四边形DBGO和正三角形OGE,所以OD=GG,OE=GE因为FOEC是等腰梯形,所以OF=EC所以BC=BG

已知:点O是△ABC内任意一点,D,E,F,G分别是OA,OB,BC,AC的中点.

证明:∵G、F分别是AC、BC中点,∴GF∥AB,且GF=12AB,同理可得,DE∥AB,且DE=12AB,∴GF∥DE,且GF=DE,∴四边形GDEF是平行四边形.

如图,点O是三角形ABC内的任意一点,求证∠BOC=∠A+∠ABD+∠ACO

因为∠BDC是三角形ABD的外角所以∠BDC=∠A+∠ABD因为∠BOC是三角形ODC的外角所以∠BOC=∠BDC+∠ACO=∠A+∠ABD+∠ACO再问:图呢再答:囧,自己画一个啊,很简单的再问:你

如图,△ABC是等边三角形,O为△ABC内的任意一点,OE‖AB,OF‖AC,分别交BC于点E、F.三角形OEF是等边三

是,因为△ABC是等边三角形,所以∠B=∠C=60°,因为OE‖AB,OF‖AC,所以∠OEF=∠B=60°,∠OFE=∠C=60°,所以△OEF是等边三角形

已知点O是△ABC内一点,求证∠BOC>∠A

证明:连接AO,并延长交BC于点D因为角BOD>角BAO,角COD>角CAO角BOC=角BOD+COD>BAO+CAO=角A得证再问:谢谢了哈再答:不用谢.

点P是△ABC内任意一点,则∠APC与∠B的大小关系是(  )

如图,延长AP与BC相交于点D,由三角形的外角性质得,∠PDC>∠B,∠APC>∠PDC,所以,∠APC>∠B.故选A.