若点p在抛物线y²=x 点q在圆(x-3)² y²=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 04:40:57
若点P(x,y)在以原点为圆心的单位圆上运动,则点Q(x+y,xy)的轨迹是 答案算出来是抛物线

三角代换学过没?(就是把P弄成(cos···,sin···))没学过的话把x方+y方=1化简为x方=1-y方,放到抛物线里求y范围,再把这个范围代到x方=1-y方里再问:可以写一下详细步骤吗?再答:第

已知点p在抛物线y²=2x上 1.若p横坐标为2,求点p到抛物线焦点的距离 2.若点p到抛物线焦点的距离4,求

同学这道题是这样做的,你要明白抛物线的定义哦.1,因为y^2=2x,所以焦点为(1/2,0)将x=2带入方程得p点坐标为(2,1).所以p点到焦点的距离为根号(1^2+3/2^2)=根号13/22,由

已知点P在直线x+y+5=0上,点Q在抛物线y^2=2x上,则PQ长度的最小值等于

先设一方程x+y+a=0与y^2=2x联立方程组,得x^2+2ax+a^2=2x令(b^2-4ac)=0得a=1/2此时直线x+y+1/2=0与抛物线相切所以直线x+y+5=0与x+y+1/2=0之间

若X=—3,则点p(X,Y)在?3Q

你看漏了吧没有函数解析式的话我可以随便出y的.

已知点P在抛物线Y^2=4X上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标是多少

答:抛物线上的点到焦点的距离等于其到准线的距离,当点P和点Q的所在直线PQ垂直于准线(或者说平行于x轴)时,所求距离之和取得最小值.抛物线y^2=4x的焦点F(1,0),准线方程x=-1所以最小距离为

P是抛物线C:y=1/2 X^2 上一点,直线l过点P并与抛物线C在点P的切线垂直,l与抛物线C交于另一点Q,当点P在

很高兴为您解答,【学习宝典】团队为您答题.请点击下面的【选为满意回答】按钮,

在直角坐标系中,抛物线经过A(-4,0),B(0,-4),C(2,0)三点,P是抛物线上的动点,Q是直线Y=-X上的动点

抛物线与坐标轴x轴的交点为A、C点,则抛物线方程为y=k(x+4)(x-2)=k(x²+2x-8)与y轴交点为B点,则-8k=-4,k=1/2所以抛物线为y=(1/2)x²+x-4

抛物线y^2=8x的准线为l,点q在圆c:x^2+y^2++6x+8y+21=0上,设抛物线上任意一点p到直线l的距离为

圆C:(x+3)^2+(y+4)^2=4即C坐标是(-3,-4),半径r=2根据抛物线的定义得到m=PF,且F坐标是(2,0),连接FC与抛物线的交点即是P,与圆的交点即是Q那么有m+|PQ|的最小值

点P在圆O:x^2+y^2=1上运动,点Q在圆C

画图可知圆O圆心为(0,0)半斤1圆C圆心为(3,0)半斤1画图就看出来了PQ位于(1,0)(2,0)则|PQ|最小值则|PQ|最小值为1

如图所示,抛物线与x轴交于两点A、B,与y轴交于点Q(0,2),顶点P在第一象限,且S△ABP=2S△ABQ,若抛物线经

S△ABP=2S△ABQQ(0,2)得P(X',4)设Y=a(x-x')∧2+4把Q(0,2),K(-1,-4),代入解得a=-2,x'=1Y=-2(x-1)∧2+4y=-2x²+4x+2

如图,在平面直角坐标系中,抛物线y=x^2+bx+c经过点(1,-1),且对称轴为在线x=2,点P,Q均在抛物线上,点P

这个题不是很难,前三问你应该没问题吧,就第4问稍微难了点,在于根据抛物线的对称性判断出抛物线的对称轴为QB的垂直平分线.解决了这一点就好了答案http://qiujieda.com/exercise/

已知点F是抛物线y^2=4x的焦点,点P在该抛物线上,且点P的横坐标是2,则|PF|=?

由于是抛物线,所以抛物线上一点到焦点的距离等遇到准线的距离|PF|就等于P点到准线的距离,准线x=-1,P点的恒坐标是2,所以|PF|为3再问:准线是怎么计算出来的,谢谢再答:圆锥曲线有第二定义,准线

急用!已知抛物线y方=4X,焦点为F,顶点为O,点P在抛物线上移动,Q是FP的中点,求点Q

容易知道,焦点F(1,0),设Q为(m,n),由于Q是FP的中点,得P(2m-1,2n)∵P在抛物线y²=4x上∴(2n)²=4(2m-1)4n²=4(2m-1)n&su

抛物线y=1/(2x^2)在点Q(2,1)处的切线方程

y=1/(2x^2)跟y=(1/2)x²差很远哦!如果是后者y=(1/2)x²是对的话,假设切线方程为通过Q(2,1)为:y-1=k(x-2)...(1)y=(1/2)x²

一道抛物线的题,已知点P是抛物线y^2=4x上的动点,点Q在y轴上,且PQ垂直于y轴,A(2,3),则使PQ+PA取得最

已知点P是抛物线y^2=4x上的动点,点Q在y轴上,且PQ垂直于y轴,A(2,3),则使PQ+PA取得最小值时的P点坐标是什么?解析:∵点P是抛物线y^2=4x上的动点,PQ垂直于y轴,A(2,3)设

若点P在抛物线Y^2=x上点Q在圆(x-3)^2+y^2=1上,则PQ的最小值是多少?

抛物线上任意一点p,则过p到园上最小的距离的线必是经过圆心o的,由于q到圆心的距离是一定的,值为1,则当op取得最小值时,pq也同时取得最小值,我们以o为圆心,以op为半径做一个圆,假设op=r则方程

已知抛物线y=x^2 -1上有一定点B(-1,0)和两个动点P、Q,当P在抛物线上运动时,BP垂直PQ,则Q点横坐标的取

分析:先假设P,Q的坐标,利用BP⊥PQ,可得斜率之积为-1,从而可得方程,再利用方程根的判别式大于等于0,即可求得Q点的横坐标的取值范围设P(t,t²-1),Q(s,s²-1)∵

已知抛物线y^2=2px(x>0)在点P和点Q处的切线的斜率分别是1和-1,则|PQ|是多少?

设A(x1,y1)、B(x2,y2),则有y12=2px1,y22=2px2,两式想减得:(y1-y2)(y1+y2)=2p(x1-x2),又因为直线的斜率为1,所以=1,所以有y1+y2=2p,又线