若级数满足 limun u2n-1 u2n收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:33:30
设∑an收敛到SS,n->∞∴1/Sn->1/S≠0,∴∑(1/Sn)发散
@满足不等式@>3/2因为根号下(2n+1)/根号下n的极限是根号2,也就是说他们是同阶的,原级数收敛等效于级数1/n^(@-1/2)收敛因为级数1/n^p当p>1时收敛,所以有@>3/2
反证法:若级数(un+vn)收敛,则级数(vn)=级数(un+vn-un)=级数(un+vn)-级数(un)收敛.矛盾.
如级数vn收敛,则vn->0,而1/vn->无穷,所以,级数1/vn不可能收敛
如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.
这题明显少条件,如果bn是单调的就可以了.否则结论不成立.反例:an=(-1)^n/n^(1/2),级数an收敛.bn=(-1)^n/n^(1/2),数列bn收敛于0,但级数anbn=级数1/n是发散
根据p级数收敛范围可得,
参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛
证明:∑an绝对收敛,∴an->0,那么存在N>0,使得n>N时,有|an|1+an>1/2=>1/(1+an)|an|/(1+an)∑|an/(1+an)|∑an/(1+an)收敛
由 ∑(n>=1)u(n)=s,可得 ∑(n>=1)[u(n)+u(n+1)] =∑(n>=1)u(n)+∑(n>=1)u(n+1) =2s-u(1).再问:(Un+Un+1)=(u1+u
∑【un+un+1】收敛于2s-u1再问:怎么做的呢?解释下理由好吗?谢谢再答:∑【un+un+1】=∑(n从1到∞)un+∑(n从1到∞)un+1=s+∑(n从1到∞)un+1(后面相当于从u2开始
1.a≠02.x≠13.m≠-2/34.x≠y5.3a≠b6.x≠2
1)该级数发散.∵(2n-1)/(2n)当n趋于无穷时等于1.2)该级数收敛.当n趋于无穷时,(1/2)^n、(1/3)^n都趋于0,原式=1/2+(1/2)²+(1/2)³+……
收敛根据定义,|an|=|(-1)^nan|再问:Yimoxilong是什么?再答:无穷小反写的3看下书上的定义
是发散的,可以用级数收敛的必要条件来判断.经济数学团队帮你解答.请及时评价.
H3=IF(F3="自制",LOOKUP(9E+307,$G$2:G2)*D3,"")下拉再问:LOOKUP(9E+307,$G$2:G2)*D3这是什么意思再答:几句话解释不清楚,=LOOKUP(9
关于无穷乘积有一个重要的判别法:已知sum(a_n)收敛,那么prod(1+a_n)收敛的充要条件是sum(a_n^2)收敛.p>1/2就是这里来的.
例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+
用傅里叶级数展开.得到答案pi^4/90见参考资料