若过定点p的动直线y=k(x-4) 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:48:35
1.设圆心(x0,y0)与直线l相切,于(x0,-2).与F连接作中垂线,可解方程为y0=(x0+2)x/2-x0^2.与x=x0交于(x0,-x0^2/2+x0),圆心轨迹方程为y=-x^2/2+x
x+2y-5+(2x-y)k=0,因为过定点,令x+2y-5=0,2x-y=0推出x=1,y=2.过定点(1,2)
设直线l:y-1=k(x+2)(由图象,k存在)所以y^2=4x,y-1=k(x+2)联立得:k^2x^2+(4k^2+2k-4)x+(2k+1)^2=0有一个公共点:△=0得:k=1/2或-1有两个
(1)(x-p/2)^2+y^2=(x+p/2)^2得M轨迹y^2=2px,是一条过原点,对称轴x轴,开口向右的抛物线(2)与3x+4y+12=0距离1=>与3x+4y+7=0相切=>y^2=2px代
设直线l:y-1=k(x+2)(由图象,k存在)所以y^2=4x,y-1=k(x+2)联立得:k^2x^2+(4k^2+2k-4)x+(2k+1)^2=0有一个公共点:△=0得:k=1/2或-1有两个
设动圆圆心的坐标为(x,y)则圆心到定点的距离与到直线的距离相等(都为半径长)根据抛物线的定义,可知此动圆圆心的轨迹为抛物线.定点为(p/2,0),定直线为x=-p/2,p>0说明焦点在x轴上,顶点在
设圆心M为(x,y),点M到直线X=-1的距离和到点P的距离相等,列一下方程就能得出,过程自己做一下吧,很简单的.
PF+PO=10动圆圆心P的轨迹方程:x²/9+y²/25=1
(1)由题意知,P到F的距离等于P到l的距离,所以P的轨迹C是以F为焦点,l为准线的抛物线,∵定点F(2,0)和定直线l:x=-2,它的方程为y2=8x(2)设A(x1,y1),B(x2,y2)则y1
(1)因为动圆P过定点F(1,0),且与定直线l:x=-1相切,所以由抛物线定义知:圆心P的轨迹是以定点F(1,0)为焦点,定直线l:x=-1为准线的抛物线,所以圆心P的轨迹方程为y2=4x;(2)直
由题意知,圆心到点F的距离等于半径,圆心到直线l:y=-1的距离也等于半径,圆心在以点F为焦点、以直线l为准线的抛物线上,此抛物线方程为x2=4y.要使圆的面积最小,只有半径(圆心到直线l的距离)最小
k(2x-y-1)-(x+2y-8)=0经过定点,有2x-y-1=0;x+2y-8=0x=2,y=3经过定点(2,3)
填空题的话,最简单的方法,k代任一值进去.例,令k=1则,x-3y+7=0,此只限截距你会求吧,就是定点~
y=k(x+2)+1=kx+(2k+1)y²=4xk^2x^2+2kx(2k+1)+(4k^2+4k+1)=4xk^2x^2+2x(2k^2+k-2)+(4k^2+4k+1)=0判别式=4(
一、思路先要画个清晰的图出来1圆心到直线的距离等于到定点p的距离,则轨迹为抛物线,设为y^=2px2根据抛物线的定义:到直线的距离等于到定点p的距离,在图上分别将PA,PB转化为到直线X=(-1)的距
把方程写成以k为未知数的形式:(x-y-2)k+x+y=0解方程组x-y-2=0x+y=0得x=1,y=-1故L过定点(1,-1)
k(4x-3y-14)+x+2y+2=04x-3y-14=0,x+2y+2=0,4x+8y+8=011y+22=0,y=-2,x=2过定点(2,-2)
(2k+1)x-(k+4)y+1-5k=02kx+x-ky-4y+1-5k=0(2x-y-5)k=-x+4y-1所以2x-y-5=0且-x+4y-1=0时一定成立解得x=3,y=1所以过(3,1)再问
方程化为(x-2y+2)+(4x+3y-14)k=0顶点为直线x-2y+2=0,4x+3y-14=0的交点(2.2)