若随机变量X服从自由度等于5的分布,求P(3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 20:53:47
那个U是平均分布吧?是的话就这么做:取小区间dy,则dy=2x*dx,值为dy的概率就是dp=0.5*dx,则概率密度:f=dp/dy=0.5*dx/(2x*dx)=1/(4x)=1/(4*y^0.5
明显是F分布,而且是F(1,3).关于F分布你百度百科查一下就知道了.而t分布的话,比如自由度是3,他的分子是正态分布,分母是根号下的Y除以自由度3,其中Y是服从卡方分布的随机变量.所以平方后,分子是
(1)P{x1
3X/2Y=(X/2)/(Y/3),所以服从自由度(2,3)的F分布.
E(Z)=E(3X-2)=3·E(X)-2,因为X服从参数为2的泊松分布,所以E(X)=2,所以E(Z)=3×2-2=4.
指数分布的期望为参数的倒数,所以EX=1/2,EY=1/4故E(2X)=1,E(3Y)=3/4
楼上真是扯淡啊.明显是F分布,而且是F(1,3).关于F分布你百度百科查一下就知道了.而t分布的话,比如自由度是3,他的分子是正态分布,分母是根号下的Y除以自由度3,其中Y是服从卡方分布的随机变量.所
因为X~t(k),由定义可令X=A/根号下B/k,其中A~N(0,1),X^2(k)分布Y=X^2=A^2/(B/k),因为A~N(0,1),所以A^2~X^2(k)Y=(A^2/1)/(B/K),则
Y=|X|因为X(0,1)所以Y=|X|就是Y=X所以概率密度fy(y)=1Y(0,1)其他0
用SPSS计算得P=0.13.
依题意,X1、X2均服从标准正态分布(X1+X2)/√2服从N(0,1)相当于只有1个标准正态分布的平方,所以自由度为1的卡方分布
是这样子的,X服从于自由度为3的卡方分布,则有X=x1^2+x2^2+x3^2从X里抽出三个样本,则X1,X2,X3都有上面X=·····的表达式.根据卡分分布的可加性,3*3=9.则有,X1+X2+
最后结果算出来是再问:不懂啊。。。。您看哦,他让求指数分布的密度函数,就是说求他的参数拉姆达,怎么求呢。。。辛苦大神求讲解。。。再答:我认为分布80%的分位点等于2,可得到上述的方程,最后
你写错了,X平方的期望是1,而X的4次方的期望才是3.
参数为2的泊松分布,其期望就等于参数2即,E(X)=2∴ E(2X)=2E(X)=4……【期望的性质E(CX)=CE(X)】再问:
就是满足正态分布的性质.
/>因为X服从参数为(2,p)的二项分布,且P{X≥1}=59,所以:P{X=0}=1-P{X≥1}=49,即:C02P0(1-P)2=(1-P)2=49,求解得:P=13,因为Y服从参数为(3,p)
由X~N(2,4),得Y=(X-2)/2~N(0,1),因此P(X