行列式A与行列式A-E的关系

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:52:37
行列式的秩与行列式的值等于零的关系,有什么关系么?

这是定理或矩阵的秩的定义(视教材)矩阵A的秩等于A中最高阶非零子式的阶数.n阶矩阵的秩为n时,其最高阶非零子式的阶数为n,而其n阶子式就是|A|,故|A|≠0.当n阶矩阵的秩

A与B都是正交矩阵,A的行列式+B的行列式=0.证明(A+B)的行列式等于0

解:由已知A,B均为n阶正交矩阵所以AA^T=A^TA=E,BB^T=B^TB=E且正交矩阵的行列式等于1或-1因为|A|+|B|=0所以|A|,|B|必为一正一负所以|A||B|=-1所以|A^T|

线性代数 方阵的行列式的性质:请证明方阵的行列式的性质:A,B为方阵,则AB乘积的行列式等于A的行列式与B

可以.需注意:1.某行的K倍加到另一行时要左乘K,列变换时右乘K2.分块矩阵不满足对角线法则行列式0AmBn0=(-1)^mn|A||B|再问:你说的K是——可以和子块矩阵相乘的矩阵吗再答:是的!你对

A*B的行列式等于 A的行列式* B的行列式 一定要权威啊

A*B的行列式等于A的行列式*B的行列式吗注意条件:A、B是n阶矩阵.则A*B的行列式等于A的行列式*B的行列式否则A*B的行列式有意义,但A的行列式或B的行列式可能无意义.

1.A为三阶矩阵,满足E-A的行列式等于0,E+A的行列式等于0,3E-2A的行列式等于0求A的特征值和A的行列式.2

由于|E-A|=0,|E+A|=0,|3E-2A|=0,故可知1,-1,3/2,均为A的特征值,由于A为3阶矩阵,故A最多有3个互不相同的特征值,因此A的特征值即为1,-1,3/2,由特征值和矩阵行列

已知A为可逆矩阵,A的行列式与A的可逆的行列式的关系是怎样的?求证明~

由A可逆,AA^-1=E两边取行列式得|AA^-1|=|E|即有|A||A^-1|=1所以|A^-1|=|A|^-1.

A*B的行列式等于 A的行列式* B的行列式

是的这个证明一般的高等代数书上应该都有的如果没有书可以看看这个视频

证明A的行列式等于 先将A转置后再求行列式

我这里有个证明:我空间相册里的,有好多线性代数题目,你可以去看看.公开的,不是好友也可以看再问:证明A的行列式等于先将A转置后再求行列式再答:这个首先要看你教材中行列式是如何定义的定义方法一般有两种1

线性代数,如果已知A不等于E,能推断出A-E的行列式不等于零吗?

显然不能例如把E的一个1变成0,把它记做A,E-A行列式为0

线性代数中A的行列式的行列式等于什么

一个矩阵的行列式就是一个数值,一个数值的行列式就是他自己.

矩阵A≠单位阵E,那么A-E的行列式等不等零?怎么证明

可能等于0,也可能不等于0.举两个例子不就行了,例如设A=2E,则A-E=E,其行列式不为0;取A为这样的矩阵,就是把E的左上角的1改为0,其它都不变,则只要A不是一阶的行列式,A-E的行列式必为0.

矩阵的秩与行列式的关系

行列式只对方阵而言有意义行列式为零意味着方阵不满秩矩阵中非0子式的最高阶数就是矩阵的秩超过矩阵的秩的任意阶方阵行列式必为0

矩阵与行列式的关系?

行列式是一个数值,矩阵是一个数表行列式可看作一个n行n列矩阵(即方阵)的行列式矩阵的行数与列数不一定相同n阶方阵A的行列式有性质:|A|=|A^T||kA|=k^n|A||AB|=|A||B|若A可逆

线性代数,下图行列式A的行列式等于行列式A的n次方吗?

这个式子有问题,左边代表的是一个非负数|A|的绝对值,所以结果还是|A|,而右边是矩阵A^n的行列式,等于|A|^n,这两个结果未必相等啊.如果把左边的|A|换成|A|乘以单位矩阵|A|E,且A是n阶

矩阵A与b乘积的行列式等于a的行列式乘以b的行列式吗

定理5.2设AB均为n阶方阵,则A与B的乘积矩阵的行列式等于A的行列式与B的行列式的乘积正确,但ab为n阶矩阵a+b的行列式等于a的行列式加上b的行列式吗这个是不成立的

行列式与矩阵的关系

行列式是一个数值,矩阵是一个数表行列式可看作一个n行n列矩阵(即方阵)的行列式矩阵的行数与列数不一定相同n阶方阵A的行列式有性质:|A|=|A^T||kA|=k^n|A||AB|=|A||B|若A可逆

线性代数中,A的行列式-B的行列式,与A-B的行列式相等么?

|A+B|不等于|A|+|B|这是非常重要的定理.A-E的行列式等于A的行列式减1么?绝大数情况不等.不要从这个方面考虑.由于|A+B|不等于|A|+|B|,所以涉及到|A+B|,要用恒等变换,在||